Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Строгое определение предела функции



Начнём с того же самого – как сформулировать данное понятие? Словесное определение предела функции формулируется значительно проще: «число является пределом функции , если при «икс», стремящемся к (и слева, и справа), соответствующие значения функции стремятся к » (см. чертёж). Всё вроде бы нормально, но слова словами, смысл смыслом, значок значком, а строгих математических обозначений маловато. И во втором параграфе мы познакомимся с двумя подходами к решению данного вопроса.

Пусть функция определена на некотором промежутке за исключением, возможно, точки . В учебной литературе общепринято считают, что функция там неопределена:

Такой выбор подчёркивает суть предела функции: «икс» бесконечно близкоприближается к , и соответствующие значения функции – бесконечно близко к . Иными словами, понятие предела подразумевает не «точный заход» в точки, а именно бесконечно близкое приближение, при этом не важно – определена ли функция в точке или нет.

Первое определение предела функции, что неудивительно, формулируется с помощью двух последовательностей. Во-первых, понятия родственные, и, во-вторых, пределы функций обычно изучают после пределов последовательностей.

Рассмотрим последовательность точек (на чертеже отсутствуют), принадлежащих промежутку и отличных от , которая сходится к . Тогда соответствующие значения функции тоже образуют числовую последовательность, члены которой располагаются на оси ординат.

Предел функции по Гейне: число называется пределом функции в точке , если для любой последовательности точек (принадлежащих и отличных от ), которая сходится к точке , соответствующая последовательность значений функции сходится к .

Генрих Гейне – это немецкий математик. …И не надо тут ничего такого думать, гей в Европе всего лишь один – это Гей-Люссак =)

Второе определение предела соорудил… да-да, вы правы. Но сначала разберёмся в его конструкции. Рассмотрим произвольную -окрестность точки («чёрная» окрестность). По мотивам предыдущего параграфа, запись означает, чтонекоторое значение функции находится внутри «эпсилон»-окрестности.

Теперь найдём -окрестность, которая соответствует заданной -окрестности(мысленно проводим чёрные пунктирные линии слева направо и затем сверху вниз). Обратите внимание, что значение выбираетсяпо длине меньшего отрезка, в данном случае – по длине более короткого левого отрезка. Более того, «малиновую» -окрестность точки можно даже уменьшить, поскольку в нижеследующем определении важен сам факт существования этой окрестности. И, аналогично, запись означает, что некоторое значение находится внутри «дельта»-окрестности.

Предел функции по Коши: число называется пределом функции в точке , если для любой заранее выбранной окрестности (сколь угодно малой),существует -окрестность точки , ТАКАЯ, что: КАК ТОЛЬКО значения (принадлежащие ) входят в данную окрестность: (красные стрелки) – ТАК СРАЗУ соответствующие значения функции гарантированно зайдут в -окрестность: (синие стрелки).

Должен предупредить, что в целях бОльшей доходчивости я немного сымпровизировал, поэтому не злоупотребляйте =)

Короткая запись: , если

В чём суть определения? Образно говоря, бесконечно уменьшая -окрестность, мы «сопровождаем» значения функции до своего предела, не оставляя им альтернативы приближаться куда-то ещё. Довольно необычно, но опять же строго! Чтобы как следует проникнуться идеей, перечитайте формулировку ещё раз.

! Внимание: если вам потребуется сформулировать только определение по Гейне или только определение по Коши, пожалуйста, не забывайте о существенномпредварительном комментарии: «Рассмотрим функцию , которая определена на некотором промежутке за исключением, возможно, точки ». Я обозначил это единожды в самом начале и каждый раз не повторял.

Согласно соответствующей теореме математического анализа, определения по Гейне и по Коши эквивалентны, однако наиболее известен второй вариант (ещё бы!), который также называют «предел на языке »:

Пример 4

Используя определение предела, доказать, что

Решение: функция определена на всей числовой прямой кроме точки . Используя определение , докажем существование предела в данной точке.

Примечание: величина «дельта»-окрестности зависит от «эпсилон», отсюда и обозначение

Рассмотрим произвольную -окрестность. Задача состоит в том, чтобы по этому значению проверить, существует ли -окрестность, ТАКАЯ, что из неравенства следует неравенство .

Предполагая, что , преобразуем последнее неравенство:
(разложили квадратный трёхчлен)

После упрощений для лучшего понимания перепишем ещё раз то, что требовалось проверить: «…существует ли -окрестность, ТАКАЯ что из неравенства следует неравенство

Конечно, существует, например, . В этом случае из неравенства следует (формально оно же само). Следует отметить, что в качестве примера можно привести и любую меньшую «дельта»-окрестность, например, , поскольку из неравенства тем более следует, что (из того, что «в кармане меньше 50-ти рублей» следует то, что «в кармане меньше 100 рублей»). Однако в качестве стандартного примера окрестности практически всегда берут «пограничное» значение, в данном примере .

Вывод: для любой сколько угодно малой -окрестности точки нашлась окрестность точки , такая, что из неравенства следует неравенство . Таким образом, по определению предела функции. Ч.т.д.

Небольшое задание для самостоятельного решения.

Пример 5

Доказать, что

Слишком просто? А вы попробуйте грамотно оформить, и, самое главное, ПОНЯТЬ, ход решения ;-)

Следует отметить, что рассмотренные задачи не дают нам каких-то способов решения пределов, они позволяют лишь доказать либо опровергнуть существование некоторых из них.

Определение бесконечного предела, в частности предела , тоже формулируется 2-мя способами. Приведу наиболее популярный вариант. Пусть функция определена на промежутке , который содержит сколь угодно большие значения «икс». Предел функции равен «плюс бесконечности» при , если для любогосколь угодно большого числа (заранее заданного) найдётся окрестность , такая, что: КАК ТОЛЬКО значения аргумента войдут в данную окрестность: (красная стрелка), ТАК СРАЗУ соответствующие значения функции зайдут в -окрестность: (синяя стрелка):

Сокращённая запись: , если

Определения следующих двух пределов предлагаю сформулировать самостоятельно:

Изобразите на чертеже принципиальную картину, прорисуйте окрестности и постарайтесь корректно записать определения. Для обозначения закрытых окрестностей используйте буквы , для открытых к бесконечности – буквы . Ответы в конце урока.

Случаи «минус бесконечности» и обобщённый случай легко отыскать в соответствующей литературе.

Что делать дальше? После освоения теории пределов целесообразно перейти к изучениюнепрерывности функции, правда, в рамках сайта сформулировано лишь «прикладное» определение непрерывности, поэтому книги в помощь. Далее в 1-м семестре, как правило, проходят производные. Здесь я рекомендую придерживаться той же схемы – сначалаучимся дифференцировать, затем осваиваем теоретический материал о производной, «сопутствующие» теоремы и т.д.

Ни в коем случае не расстраивайтесь, если дела «пойдут не очень», в конце концов, тут нужно принять во внимание, что учиться на «технаря» вообще непросто: что-то даётся легче, что-то труднее, а с чем-то может и помучиться придётся. Лично у меня некоторые разделы математики шли лучше, некоторые хуже, а программирование вообще переносилось с трудом (уж не знаю, почему). Нельзя идеально знать и любить всё.

Оглядываясь в прошлое, с улыбкой вспоминаю свои первый месяцы учёбы – тогда математический анализ показался мне самой трудной дисциплиной, и я с перепуга выучил ВЕСЬ материал 1-го семестра, даже сказать точнее не выучил, а почти во всём разобрался, чего и всем желаю!

Надеюсь, данная статья была полезна, а может, и послужила ключом к предмету!

Решения и ответы:

Пример 3:Решение: докажем, что . Для этого рассмотрим произвольную -окрестность точки и проверим, найдётся ли натуральный номер – такой, что выполнено:

Преобразуем неравенство:

(подумайте, почему)
Для всех «эн»: , поэтому:


Вывод: т.к. «эпсилон» выбиралось произвольно, то для любой сколько угодно малой -окрестности точки нашлось значение , такое, что выполнено . Таким образом, по определению. Что и требовалось доказать.

Формулировка предела:
, если

Пример 5:Решение: функция определена на всей числовой прямой. Используя определение , докажем существование предела в точке .
Рассмотрим произвольную -окрестность и проверим, найдётся ли -окрестность, такая что из неравенства следует .
Преобразуем неравенство с «эпсилон»:

В качестве искомой окрестности выбираем .
Вывод: для любой сколь угодно малой -окрестности точки нашлось значение , такое, что , следовательно, по определению. Ч.т.д.

Формулировки пределов:
, если
, если

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.