Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Предел функции по Коши



Предел функции по Гейне

Значение называется пределом (предельным значением) функции в точке , если для любой посл-ти точек , сходящейся к , но не содержащей в качестве одного из своих элементов (то есть в проколотой окрестности ), посл-ть значений функции сходится к .[1]

Предел функции по Коши

Значение называется пределом (предельным значением) функции в точке , если для любого наперёд взятого положительного числа ε найдётся отвечающее ему положительное число такое, что для всех аргументов , удовл условию , выполняется неравенство .[1]

 

 

Критерий Коши
Определение. Говорят, что посл-ть { } удовлетворяет условию Коши, если для любого числа >0 существует такой номер N, зависящий от , что для всех номеров m и n таких, что n≥N, m≥N, справедливо неравенство < (*). Посл-ть, удовл условию Коши, называется фундаментальной.

Условие (*) можно сформулировать иначе: для любого числа >0 существует такой номер N, зависящий от , что для всех номеров n N и всех натуральных p выполняется условие: .

Теорема (критерий Коши).Для того чтобы посл-ть сходилась, необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Доказательство. Необходимость. Пусть посл-ть { } сходится и .

Зададим >0, тогда существует такой номер N, что для всех номеров n N выполняется неравенство . Пусть n N и m N, тогда , то есть выполняется условие Коши.

Достаточность. Пусть { } удовлетворяет условию Коши, то есть для любого >0 существует номер N, что для n N и m N выполняется неравенство . Пусть =1, тогда существует номер N такой, что при n N и m N выполняется . В частности, если n N и m=N , то , то есть при n N . Это значит, что посл-ть {x }, n=N , N +1,…ограничена. Поэтому в силу теоремы Больцано-Вейерштрасса существует ее сходящаяся подпоследовательность { }.

Пусть . Зададим >0. Тогда существует такой номер K ,что для всех номеров K K или, что то же самое, для всех n n выполняется неравенство

Обозначим через =max{N,n } и зафиксируем некоторое n . Тогда для всех n N имеем , что и означает, что (для суперлюбознательных)

5.Односторо́нний преде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (илипреде́лом сле́ва) и правосторо́нним преде́лом (преде́лом спра́ва).

Предел функции на бесконечности в математическом анализе описывает поведение значения данной функции, когда её аргумент становится бесконечно большим по модулю.

1. 6. Бесконечно малые и их свойства. limx® a a(x)=0

Теорема. 1. Если f(x)=b+a, где a - б.м. при x® a, то limx® a f(x)=b и обратно, если limx® af(x)=b, то можно записать f(x)=b+a(x).

Теорема. 2. Если limx® a a(x)=0 и a(x) ¹ 0, то 1/a® ¥.

Теорема. 3. Сумма конечного числа б.м. есть б.м.

Теорема. 4. Произведение б.м. на ограниченную функцию есть б.м.

  1. Теоремы о пределах.

Теорема. 1. Предел суммы есть сумма пределов.

Теорема. 2. Предел произведения есть произведение пределов.

Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0).

Теорема. 4. Если u(x) £ z(x) £ v(x), и limx® a u(x)=limx® a v(x)=b, то limx® a z(x)=b. ("Теорема о двух милиционерах").

Теорема 1. Предел постоянной равен самой постоянной.

.

Доказательство. f(x)=с, докажем, что .

Возьмем произвольное e>0. В качестве d можно взять любое

положительное число. Тогда при

.

Теорема 2. Функция не может иметь двух различных пределов в

одной точке.

Доказательство. Предположим противное. Пусть

и .

По теореме о связи предела и бесконечно малой функции:

f(x)-A= - б.м. при ,

f(x)-B= - б.м. при .

Вычитая эти равенства, получим:

B-A= - .

Переходя к пределам в обеих частях равенства при , имеем:

B-A=0, т.е. B=A. Получаем противоречие, доказывающее теорему.

Теорема 3. Если каждое слагаемое алгебраической суммы функций

имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.

.

Доказательство. Пусть , , .

Тогда, по теореме о связи предела и б.м. функции:

где - б.м. при .

Сложим алгебраически эти равенства:

f(x)+g(x)-h(x)-(А+В-С)= ,

где б.м. при .

По теореме о связи предела и б.м. функции:

А+В-С= .

Теорема 4. Если каждый из сомножителей произведения конечного числа функций имеет предел при , то и произведение имеет предел при , причем предел произведения равен произведению пределов.

.

Следствие. Постоянный множитель можно выносить за знак предела.

.

Теорема 5. Если функции f(x) и g(x) имеют предел при ,

причем , то и их частное имеет предел при , причем предел частного равен частному пределов.

,

 

 

§ 7,Первый замечательный предел:

§ Второй замечательный предел:

8.Теорема 3 (теорема о промежуточных значениях). Пусть функцияy = f(x) непрерывна на отрезке [a, b] и f(a) = A, f(b) = B. Тогда для любого числа C, заключённого между A и B, найдётся внутри этого отрезка такая точка CÎ [a, b], что f(c) = C.

Эта теорема геометрически очевидна. Рассмотрим график функции y = f(x). Пусть f(a) = A, f(b) = B. Тогда любая прямая y = C, где C – любое число, заключённое между A и B, пересечёт график функции, по крайней мере, в одной точке. Абсцисса точки пересечения и будет тем значением x = C, при котором f(c) = C.

Таким образом, непрерывная функция, переходя от одного своего значения к другому, обязательно проходит через все промежуточные значения. В частности:

Следствие. Если функция y = f(x) непрерывна на некотором интервале и принимает наибольшее и наименьшее значения, то на этом интервале она принимает, по крайней мере, один раз любое значение, заключённое между её наименьшим и наибольшим значениями.

Теоре́ма Вейерштра́сса в математическом анализе и общей топологии гласит, что функция, непрерывная на компакте, ограничена на нём и достигает своей верхней и нижней грани. Пусть дана непрерывная числовая функция, определённая на отрезке, то есть и . Пусть

— точные верхняя и нижняя грани множества значений функции f соответственно. Тогда эти значения конечны ( ) и достигаются (существуют такие, что ).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.