Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Интерфейс RS-232C – CОМ-порт



Тверской государственный технический университет

В.В. Лебедев, А.Н. Васильев, А.Р. Хабаров

 

 

Периферийные устройства ЭВМ

 

Учебное пособие

Издание первое

Допущено Учебно-методическим объединением вузов по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности 230101 Вычислительные машины, комплексы системы и сети.

УДК 681.327.8(075.8)

ББК 32.973.26-04я7

 

Лебедев, В.В. Периферийные устройства ЭВМ: учебное пособие / В.В. Лебедев, А.Н. Васильев, А.Р. Хабаров. 1-е изд. Тверь: ТГТУ, 2009. 176 с.

 

Включает описание принципов работы и взаимодействия периферийных устройств и ЭВМ. Подробно рассмотрен один из самых успешно применяемых интерфейсов RS-232С. Материал пособия позволяет студентам ознакомиться с теоретическими основами работы модема, клавиатуры, принтера и видеоадаптера и закрепить их при выполнении предложенного лабораторного практикума.

Содержание учебного пособия соответствует рабочей программе по курсу «Интерфейсы периферийных устройств».

Предназначено для студентов специальности 230101 Вычислительные машины, комплексы, системы и сети для изучения данной дисциплины, при курсовом и дипломном проектировании.

 

 

Рецензенты: заведующий кафедрой ЭВМ Тверского государственного технического университета, доктор технических наук, профессор В.А. Григорьев; Федеральное государственное унитарное предприятие «Центральное конструкторское бюро транспортного машиностроения» (ведущий инженер Д.В. Суринский).

 

ISBN 978-5-7995-0427-4 © Тверской государственный

технический университет, 2009


Введение

Современные компьютеры представляют собой сложный аппаратно-программный комплекс, предназначенный для автоматической обработки информации в процессе решения вычислительных и информационных задач. Благодаря принципу открытой архитектуры, существует возможность подключения к системному блоку компьютера широкого спектра дополнительных периферийных устройств различного назначения. С помощью периферийных устройств осуществляется связь с различными источниками (поставщиками) и получателями (потребителями) информации. Функции периферийных устройств достаточно разнообразны, однако среди них можно выделить две основные: хранение информации на различных носителях данных и преобразование ее согласно функции, выполняемой внешним устройством. К периферийным устройствам относятся устройства ввода-вывода и внешняя память; к аппаратным средствам ввода информации в компьютер – клавиатура, различного рода манипуляторы (мышь, трекбол, джойстик), сканер и другие устройства; к аппаратным средствам вывода информации из компьютера – мониторы, принтеры, графопостроители, синтезаторы речи. Модемы используются как для передачи, так и для приема информации. Устройства внешней памяти компьютера выполняют функции двустороннего обмена информацией и служат для постоянного хранения программ и данных.

Коммуникация компьютера с периферийными устройствами осуществляется посредством портов ввода-вывода или интерфейсов. Под интерфейсом понимается совокупность правил и средств, устанавливающих единые принципы взаимодействия устройств. Интерфейс периферийного устройства включает в себя техническое исполнение, наборы передаваемых сигналов и правила обмена информацией с компьютером. Существуют два основных класса: последовательные и параллельные интерфейсы. Чисто теоретически параллельные всегда должны выигрывать по скорости у последовательных, но на практике оказывается, что и последовательные имеют свои плюсы, благодаря чему они заняли свою нишу.

Изучение интерфейсов для связи с периферийными устройствами необходимо, так как грамотный специалист по вычислительной технике должен владеть теоретическими знаниями и практическими навыками для построения различных устройств сопряжения на базе существующих стандартных интерфейсов, а также в случае необходимости разрабатывать свои собственные интерфейсы.

В учебном пособии рассмотрены принципы работы одного из самых широко применяемых интерфейсов – RS-232C или COM-порта. Его изучение позволит достаточно быстро освоить принципы функционирования последовательных интерфейсов, протоколов работы электронных схем передачи последовательных сигналов, и перейти к освоению других последовательных интерфейсов: USB и FireWire.

Рассмотрены различные периферийные устройства, такие как модем, клавиатура, принтер и монитор. Особое внимание уделено рассмотрению их интерфейсов. Дан большой объем справочной информации.

Приведен лабораторный практикум, выполнение которого поможет закреплению и лучшему усвоению теоретического материала, а также приобретению практических навыков в разработке и использовании интерфейсов периферийных устройств.

Учебное пособие ориентировано в первую очередь на студентов и преподавателей вузов, аспирантов и молодых специалистов, работа и исследования которых затрагивают вопросы взаимодействия компьютера и периферийных устройств.

 

 

 

Интерфейс RS-232C

Интерфейс RS-232C – CОМ-порт

Последовательный интерфейс для передачи данных в одном направлении использует одну сигнальную линию, по которой информационные биты передаются друг за другом последовательно. Английские названия интерфейса и порта Serial interface и Serial port иногда неправильно переводят как «серийные». Последовательная передача позволяет сократить количество сигнальных линий и добиться улучшения связи на больших расстояниях.

Начиная с первых моделей, в PC имелся последовательный порт – CОМ-порт (Communication Port – коммуникационный порт). Этот порт обеспечивает асинхронный обмен по стандарту RS-232C. Синхронный обмен в PC поддерживают лишь специальные адаптеры, например SDLC или V.35. CОМ-порты реализуются на микросхемах универсальных асинхронных приемопередатчиков (UART), совместимых с семейством i8250/16450/16550. Они занимают в пространстве ввода-вывода по 8 смежных 8-битных регистров и могут располагаться по стандартным базовым адресам 3F8h (CОМ1), 2F8h (CОМ2), 3E8h (CОМ3), 2E8h (CОМ4). Порты могут вырабатывать аппаратные прерывания IRQ4 (обычно используется для CОМ1 и CОМ3) и IRQ3 (для CОМ2 и CОМ4). С внешней стороны порты имеют линии последовательных данных передачи и приема, а также наборы сигналов управления и состояния, соответствующие стандарту RS-232C. CОМ-порты имеют внешние разъемы-вилки (male) DB25P или DB9P, выведенные на заднюю панель компьютера. Гальваническая развязка отсутствует – схемная земля подключаемого устройства соединяется со схемной землей компьютера. Скорость передачи данных может достигать 115 200 бит/с.

Компьютер может иметь до четырех последовательных портов CОМ1 – CОМ4 (для машин класса AT типично наличие двух портов) с поддержкой на уровне BIOS. Сервис BIOS Int 14h обеспечивает инициализацию порта, ввод и вывод символа (без прерываний) и опрос состояния. Через Int 14h скорость передачи программируется в диапазоне 110-9600 бит/с (меньше, чем реальные возможности порта). Для повышения производительности широко используется взаимодействие программ с портом на уровне регистров, для чего требуется совместимость аппаратных средств CОМ-порта с программной моделью i8250/16450/16550.

Название порта указывает на его основное применение – подключение коммуникационного оборудования (например, модема) для связи с другими компьютерами, сетями и периферийными устройствами. К порту могут непосредственно подключаться и периферийные устройства с последовательным интерфейсом: принтеры, плоттеры, терминалы и т.д. CОМ-порт широко используется для подключения мыши, а также организации непосредственной связи двух компьютеров. К CОМ-порту подключаются и электронные ключи.

Практически все современные системные платы (еще начиная с PCI-плат для процессоров 486) имеют встроенные адаптеры двух CОМ-портов. Один из портов может использоваться и для беспроводной инфракрасной связи с периферийными устройствами (IrDA). Существуют карты ISA с парой CОМ-портов, где они чаще всего соседствуют с LPT-портом, а также с контроллерами дисковых интерфейсов. «Классический» CОМ-порт позволяет осуществлять обмен данными только программно-управляемым способом, при этом для пересылки каждого байта процессору приходится выполнять несколько инструкций. Современные порты имеют FIFO-буферы данных и позволяют выполнять обмен данных по каналу DMA, существенно разгружая CPU.

В спецификациях PC`99 традиционные CОМ-порты не рекомендованы, но еще разрешены для использования. Если они есть, то должны быть совместимыми с UART 16550A и обеспечивать скорость до 115,2 Кбит/с. Устройствам, которые традиционно используют CОМ-порт, рекомендуется переводить на последовательные шины USB и FireWire.

 

Протокол RS-232C

Стандарт RS-232C описывает несимметричные передатчики и приемники – сигнал передается относительно общего провода – схемной земли (симметричные дифференциальные сигналы используются в других интерфейсах, например, RS-422). Интерфейс не обеспечивает гальванической развязки устройств. Логической единице соответствует напряжение на входе приемника в диапазоне -12 … -3В (рис. 1). Логическому нулю соответствует диапазон +3 … +12В. Диапазон -3 … +3В – зона нечувствительности, обусловливающая гистерезис приемника: состояние линии будет считаться измененным только после пересечения порога. Уровни сигналов на выходах передатчиков должны быть в диапазонах -12 … -5В и +5 … +12В для представления единицы и нуля соответственно.

Интерфейс предполагает наличие защитного заземления для соединяемых устройств, если они оба питаются от сети переменного тока и имеют сетевые фильтры.

Наиболее часто используются трех- или четырехпроводная связь (для двунаправленной передачи). Схема соединения для четырехпроводной линии связи показана на рис. 2. Для двухпроводной линии связи в случае только передачи из компьютера во внешнее устройство используются сигналы SG и TxD. Все 10 сигналов интерфейса задействуются только при соединении компьютера с модемом.

 

Рис.1. Уровни сигналов RS-232C на передающем

и принимающих концах линии связи

 

Рис.2. Схема четырехпроводной линии связи для RS-232C

 

 

Назначение контактов разъемов CОМ-портов (и любой другой аппаратуры передачи данных АПД) приведено в табл. 1. У модемов название цепей и контактов такое же, но роли сигналов (вход-выход) меняются на противоположные.

Подмножество сигналов RS-232C, относящихся к асинхронному режиму, рассмотрим с точки зрения CОМ-порта PC. Для удобства будем пользоваться мнемоникой названий, принятой в описаниях CОМ-портов и большинства устройств (она отличается от безликих обозначений RS-232 и V.24). Назначение сигналов интерфейса приведено в табл. 2.

Таблица 1. Разъемы и сигналы интерфейса RS-232C

Обозначение цепи Контакт разъема № провода кабеля выносного разъема PC Направле-ние
CОМ-порт RS-232 V.24 DB-25P DB-9P 11 22 33 44 I/O
PG AA (10) (10) (10) -
SG AB -
TD BA O
RD BB I
RTS CA O
CTS CB I
DSR CC I
DTR CD 108/2 O
DCD CF I
RI CE I

 

 

Примечания:

1Ленточный кабель 8-битных мультикарт.

2Ленточный кабель 16-битных мультикарт и портов на системных платах.

3 Вариант ленточного кабеля портов на системных платах.

4 Широкий ленточный кабель к 25-контактному разъёму.

 

Нормальная последовательность управляющих сигналов для случая подключения модема к CОМ-порту приведена на рис. 3. Напомним, что положительному уровню соответствует логическое состояние «выключено», а отрицательному – «включено».

Таблица 2. Назначение сигналов интерфейса RS-232C

Сигнал Назначение
PG Protected ground – защитная земля, соединяется с корпусом устройства и экраном кабеля
SG Signal ground – сигнальная (схемная) земля, относительно которой действуют уровни сигналов
TD Transmit data – последовательные данные – выход передатчика
RD Receive data – последовательные данные – вход приемника
RTS Request to send – выход запроса передачи данных: состояние «включено» уведомляет модем о наличии у терминала данных для передачи. В полудуплексном режиме используется для управления направлением – состояние «включено» служит сигналом модему на переключение в режим передачи
CTS Clear to send – вход разрешения терминалу передавать данные. Состояние «выключено» запрещает передачу данных. Сигнал используется для аппаратного управления потоком данных
DSR Data set ready – вход сигнала готовности от аппаратуры передачи данных (модем в рабочем режиме подключен к каналу и закончил действия по согласованию с аппаратурой на противоположном конце канала)
DTR Data terminal ready – выход сигнала готовности терминала к обмену данными, состояние «включено» поддерживает коммутируемый канал в состоянии соединения
DCD Data carrier detected – вход сигнала обнаружения несущей удаленного модема
RI Ring indicator – вход индикатора вызова (звонка). В коммутируемом канале этим сигналом модем сигнализирует о принятии вызова

 

 

Рис. 3. Последовательность управляющих сигналов интерфейса RS-232C

Рассмотрим последовательность управляющих сигналов.

1. Установкой сигнала DTR компьютер указывает на желание использовать модем.

2. Установкой сигнала DSR модем сигнализирует о своей готовности к установлению соединения.

3. Сигналом RTS компьютер запрашивает разрешение на передачу и заявляет о своей готовности принимать данные от модема.

4. Сигналом CTS модем уведомляет о своей готовности к приему данных от компьютера и передаче их в линию.

5. Снятием сигнала CTS модем сигнализирует о невозможности дальнейшего приема (например, буфер заполнен) – компьютер должен приостановить передачу данных.

6. Восстановлением сигнала CTS модем разрешает компьютеру продолжить передачу (в буфере появилось место).

7. Снятие сигнала RTS может означать как заполнение буфера компьютера (модем должен приостановить передачу данных в компьютер), так и отсутствие данных для передачи в модем. Обычно в этом случае модем прекращает пересылку данных в компьютер.

8. Модем подтверждает снятие сигнала RTS сбросом сигнала CTS.

9. Компьютер повторно устанавливает сигнал RTS для возобновления передачи.

10. Модем подтверждает готовность к этим действиям.

11. Компьютер указывает на завершение обмена.

12. Модем отвечает подтверждением.

13. Компьютер снимает сигнал DTR, что обычно является сигналом на разрыв соединения.

14. Модем сбросом сигнала DSR сообщает о разрыве соединения.

Из рассмотрения этой последовательности становятся понятными соединения DTR-DSR и RTS-CTS в нуль-модемных кабелях.

При асинхронной передаче (рис. 4) каждому байту предшествует старт-бит, сигнализирующий приемнику о начале посылки, за которым следуют биты данных и, возможно, бит паритета (четности). Завершает посылку стоп-бит, гарантирующий паузу между посылками. Старт-бит следующего байта посылается в любой момент после стоп-бита, то есть между передачами возможны паузы произвольной длительности. Старт-бит, имеющий всегда строго определенное значение (логический 0), обеспечивает простой механизм синхронизации приемника по сигналу от передатчика. Подразумевается, что приемник и передатчик работают на одной скорости обмена.

Формат асинхронной посылки позволяет выявлять возможные ошибки передачи: ложный старт-бит, потерянный стоп-бит, ошибку паритета. Контроль формата позволяет обнаружить разрыв линии: при этом принимается логический нуль, который сначала трактуется как старт-бит и нулевые биты данных, потом срабатывает контроль стоп-бита.

 

Рис. 4. Формат асинхронной передачи

 

 

Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19 200, 38 400, 57 600 и 115 200 бит/с. Иногда вместо единицы измерения бит/с используют бод (baud), но при рассмотрении двоичных передаваемых сигналов это некорректно. В бодах принято измерять частоту изменения состояния линии, а при недвоичном способе кодирования (широко применяемом в современных модемах) в канале связи скорости передачи бит (бит/с) и изменения сигнала (бод) могут отличаться в несколько раз.

Количество бит данных может составлять 5, 6, 7 или 8. Количество стоп-бит может быть 1, 1,5 или 2 (полтора бита означает только длительность стопового интервала).

Асинхронный режим является байт-ориентированным (символьно- ориентированным) – минимальная пересылаемая единица информации – байт (символ). В отличие от него синхронный режим (не поддерживается CОМ-портами) является бит-ориентированным – кадр, пересылаемый по нему, может иметь произвольное количество бит.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.