Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Уравнения с разделяющимися переменными



Определение 5. Дифференциальное уравнение вида

 

 

где f1(x) и f2(y) — непрерывные функции, называется уравне­нием с разделяющимися переменными.

Подчеркнем, что правая часть уравнения представляет со­бой произведение, в котором один сомножитель зависит только от х, а другой — только от у. Метод решения такого вида урав­нений носит название разделения переменных. Запишем производную у' в ее эквивалентной форме как отношение дифферен­циала функции к дифференциалу независимой переменной , умножим обе части уравнения (9.3) на dx и поделим обе его части на f2(y), полагая, что f2(у) ≠ 0; получаем

 

 

В этом уравнении переменная у входит в левую часть, а пе­ременная х — только в правую, т.е. переменные разделены. Пусть у = φ(x) является решением уравнения (9.3), тогда при подстановке этого решения в уравнение (9.4) получаем тож­дество: два дифференциала равны друг другу, только в правой части дифференциал выражен через независимую переменную x, а в левой части — через функцию у. Поскольку дифференци­алы равны, то их неопределенные интегралы различаются на постоянную величину, т.е., интегрируя слева по переменной у, а справа по переменной х, получаем

 

 

где С — произвольная постоянная.

Рассмотрим примеры решения уравнений методом разде­ления переменных.

Пример 1. ху' — у = 0, найти частное решение при начальных условиях у0 = 2 при x0 = -4.

Решение. Разделим переменные, для чего перенесем у в правую часть, поделим обе части полученного уравнения на ху и умножим их на dx; получим

 

 

Интегрируя обе части этого уравнения (правую по x, а левую по у), имеем

 

 

где С — произвольная постоянная. При потенцировании полу­чаем

 

 

что эквивалентно уравнению у = ±Сх, или у = С1х. Получен­ная функция представляет семейство интегральных кривых. Для выделения частного решения при указанных начальных условиях подставим в эту формулу х = -4 и у = 2, откуда получим значение для С: С = -1/2. Окончательно частное решение имеет вид

 

Пример 2. у' = х , найти частное решение, проходящее через точку (0,1).

Решение. Разделяя переменные, получаем уравнение в дифференциалах

 

 

Интегрируя, имеем

 

 

где С — произвольная постоянная величина. После интегриро­вания (интеграл в правой части берется при помощи замены переменной) имеем уравнение семейства интегральных кривых

 

 

Выделение частного решения, проходящего через точку (0, 1), приводит к определению произвольной постоянной: С = , т.е. эта кривая описывается уравнением (с учетом выбора знака)

 

Неполные уравнения

Определение 6. Дифференциальное уравнение первого поряд­ка (9.1) называется неполным, если функция f явно зависит только от одной переменной: либо от х, либо от у.

Различают два случая такой зависимости.

1. Пусть функция f зависит только от х. Переписав это уравнение в виде

 

 

нетрудно убедиться, что его решением является функция

 

 

2. Пусть функция f зависит только от у, т.е. уравнение (9.1) имеет вид

 

 

Дифференциальное уравнение такого вида называется авто­номным. Такие уравнения часто употребимы в практике мате­матического моделирования и исследования природных и физи­ческих процессов, когда, например, независимая переменная х играет роль времени, не входящего в соотношения, описываю­щие законы природы. В этом случае особый интерес представ­ляют так называемые точки равновесия, или стационарные точки,— нули функции f(у), где производная у' = 0.

Решение уравнения (9.6) методом разделения переменных приводит к функциональному уравнению для определения не­известной функции у = φ(x) (или х = ψ(у)):

 

 

В общей теории дифференциальных уравнений развита те­ория качественного анализа, основанная на исследовании ха­рактера стационарных точек.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.