Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Площадь плоской фигуры



 

Рассмотрим на плоскости Оху фигуру, ограниченную гра­фиком непрерывной и положительной функции f(x) на отрезке [а, b], отрезком [а, b] и вертикальными прямыми х = а и х = b (рис. 7.2). Эту фигуру будем называть криволинейной трапе­цией.

 

 

Величина площади криволинейной трапеции равна опреде­ленному интегралу от функции f(x) на отрезке [а, b]:

 

 

Если фигура ограничена сверху и снизу неотрицательными функциями f(x) и g(х) соответственно, непрерывными на от­резке [а, b], то площадь S криволинейной фигуры равна разнос­ти площадей криволинейных трапеций, ограниченных сверху графиками f(x) и g(х):

 

Рассмотрим задачи на вычисление площадей фигур.

Пример 1. Найти площадь фигуры, ограниченной графиком функции у = ln x ≥ 0, осью Ох и прямой х = 2.

 

 

Решение. Отрезок интегрирования: 1 ≤ х ≤ 2 (рис. 7.3), так что искомая площадь согласно формуле (7.14) равна:

 

Пример 2. Найти площадь фигуры, ограниченной линиями у = , у = х2.

Решение. Вычислим абсциссы точек пересечения указан­ных кривых, для чего приравняем правые части этих уравне­ний: х2 = . Корни этого уравнения суть x1 = 0, x2 = 1. Сле­довательно, площадь фигуры, ограниченной сверху функцией у = и снизу функцией у = x2 (рис. 7.4), дается определенным интегралом на отрезке [0,1]:

 

 

Объем тела вращения

 

Рассмотрим тело, которое образуется при вращении во­круг оси Ох криволинейной трапеции, ограниченной сверху непрерывной и положительной на отрезке [а, b] функцией f(x) (рис. 7.5). Объем этого тела вращения определяется формулой

 

 

 

Если тело образовано вращением криволинейной трапеции вокруг оси Оу, то, выражая х через у как обратную функцию, мы можем получить аналогичным образом формулу для объ­ема тела вращения:

 

 

где [c, d] область изменения функции у = f(x).

Рассмотрим примеры вычисления объемов тел, образован­ных вращением фигур, ограниченных следующими линиями.

Пример 3. у= х2, у = вокруг оси Ох.

Решение. Искомый объем вращения равен разности объ­емов, образованных вращением криволинейных трапеций с верхними границами соответственно у = и у = х2. Пределы интегрирования определяются по точкам пересечения этих кривых: а = 0 и b = 1. По формуле (7.15) получаем

 

Пример 4. у = eх, х = 0, х = 1, у = 0 вокруг оси Оу.

 

 

Ррешение. Выражаем х через у: х = ln у; промежуток ин­тегрирования [1, е] определяется очевидным образом. Объем тела вращения (рис. 7.6) равен разности объемов соответствен­но цилиндра радиуса 1 и высоты е и тела вращения вокруг оси Оу криволинейной трапеции, ограниченной сверху кривой х = ln у. Согласно формуле (7.15) получаем

 

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.