Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Чернышев Николай Иванович



Евразийская ассоциация дистанционного образования

 

Пензенский технологический институт

 

 

СИСТЕМА

ДИСТАНЦИОННОГО

ОБРАЗОВАНИЯ

 

 

Учебно-практическое пособие
по специальности 220100
“Вычислительные машины, комплексы, системы и сети”

 

Организация ЭВМ

 

Подготовили:

кандидат технических наук, доцент

Бикташев Равиль Айнулович

 

кандидат технических наук, доцент

Чернышев Николай Иванович

 

Пенза 2005


 

Содержание

1. ОБЩИЕ СВЕДЕНИЯ О ЭВМ……………………………………..

1.1 Этапы развития ЭВМ

1.2 Характеристики ЭВМ…………………………………………….

1.3 Классификация средств ЭВТ…………………………………..

1.4 Структуры ЭВМ……………………………………………………

1.4.1 Обобщенная структура ЭВМ………………………………………

1.4.2 Структура ЭВМ на основе общей шины……………………

1.5 Контрольные вопросы……………………………………

2. АРХИТЕКТУРА КЛАССИЧЕСКОЙ ЭВМ……………………….

2.1 Принцип программного управления…………………………….

2.2 Принцип хранимой в памяти программы………………………….

2.3 Обобщенный формат команд……………………………………..

2.4 Способы адресации команд………………………………

2.4.1 Процессоры с принудительной адресацией…………………..

2.4.2 Естественная адресация команд……..…………………..

2.5 Способы адресации операндов…………………………..

2.5.1 Прямая адресация…………………………………….

2.5.2 Косвенная адресация…………………………………

2.5.3 Регистровая адресация………………………………….

2.5.4 Непосредственная адресация…………………………

2.5.5 Неявная адресация…………………………

2.5.6 Относительная адресация…………………………

2.5.7 Индексная (автоинкрементная и автодекрементная) адресация…………………………

3. ЗАПОРМИНАЮЩИЕ УСТРОЙСТВА ЭВМ

3.1 Классификация ЗУ………………………………………..

3.2 Основные характеристики ЗУ

3.3 Структура ОЗУ с произвольной выборкой…………..

3.4 3.4 Особенности организации динамической памяти……………….

3.5 ОЗУ магазинного типа……………………

3.6 Ассоциативные ЗУ………………………………

3.7 Контрольные вопросы…………………………

4. ПРИНЦИПЫ ОРГАНИЗАЦИИ ПРОЦЕССОРОВ……….

4.1 Обобщенные структуры процессоров с непосредственными и магистральными связями………………………

4.2 Декомпозиция процессора на УА и ОУ……………….

4.3 Классификация УУ………………………..

4.4 Микропрограммные УУ……………………….

4.4.1 Принцип микропрограммного управления Уилкса…………..

4.4.2 Структура блока микропрограммного управления……….

4.5 Развернутая структура процессора и его функционирование…

4.5.1 Обобщенная структура процессора с микропрограммным управлением………………………

4.5.2 Рабочий цикл процессора……………………….

4.5.3 Понятие о слове состояния процессора (PSW)…….

4.5.4 Процедура выполнения команд перехода (условного и безусловного)……………………………….

4.5.5 Процедура выполнения команд вызова подпрограмм…….

4.6 Контрольные вопросы…………………

5. СИСТЕМЫ ПРЕРЫВАНИЯ ПРОГРАММ

5.1 Общие сведения…………………..

5.2 Характеристики систем прерываний………………

5.3 Схема выполнения процедуры прерывания….

5.4 Способы реализации систем прерываний……..

5.4.1 Схема прерывания с опросом по вектору………….

5.4.2 Прерывания с программно - управляемым приоритетом

5.5 Контрольные вопросы…………………………

6. ОРГАНИЗАЦИЯ ВВОДА – ВЫВОДА…………………………….

6.1 Общие сведения о вводе-выводе в ЭВМ……………………………….

6.2 Основные способы ввода-вывода……………………………………..

6.3 Ввод - вывод с прерыванием программы……………..

6.4 Ввод – вывод в режиме ПДП………………………………

6.5 Интерфейсы………………………………………………..

6.6 Шины интерфейсов ввода-вывода………………………………

6.6.1 Синхронные шины……………………………………..

6.6.2 Асинхронные шины………………………………

7. ОРГАНИЗАЦИЯ ПАМЯТИ ЭВМ С МАГИСТРАЛЬНОЙ СТРУКТУРОЙ

7.1. Типовая структура ЭВМ с магистральной архитектурой……….

7.2. Организация адресных шин в ЭВМ с магистральной структурой……

7.2.1. Изолированная система адресных шин

7.2.2. Совмещенная система адресных шин

7.3 Организация ПЗУ.Проектирование памяти ЭВМ

7.3.1. Построение постоянной памяти

7.4 Построение оперативной памяти………………………………….

7.5 Регенерация динамической памяти……………………..

7.6 КЭШ-память……………………………………..

7.6.1 КЭШ прямого отображения ……………………

7.6.2 Наборно- ассоциативный КЭШ……………………….

7.7 Контрольные вопросы…………………..

 

8. ОРГАНИЗАЦИЯ ПК…………………………………..

8.1 Структурная схема системной платы ЭВМ IBM PC/AT 286…………………………………

8.1.1 Система шин системной платы ЭВМ IBM PC/AT 286 …………

8.1.2 Состав и назначение основных устройств системной платы ЭВМ IBM PC/AT 286…………………………..

8.1.2.1 Назначение и характеристики процессора и сопроцессора…..

8.1.2.3 Назначение шинных формирователей………………………..

8.1.2.4 Формирование управляющих сигналов и работа подсистемы памяти……………………………………………………………………………..

8.1.2.5 Назначение и характеристики периферийных устройств системной платы…………………………

8.1.2.6 Назначение ПЗУ BIOS………………………

8.1.3 Шина ISA…………………………………………………………..

8.1.3.1 Особенности шины ISA……………………….

8.1.3.2 Основные сигналы шины ISA………………………..

8.1.3.3 Шинные циклы магистрали ISA…………………………….

8.1.3.4 Электрические и конструктивные характеристики шины ISA….

8.2 Структурная схема системной платы ЭВМ IBM PC/AT Pentium..

8.2.1 Локальные шины ввода –вывода………………………

8.2.2 Состав и назначение основных устройств системной платы ЭВМ IBM PC/AT Pentium…………………………………………………………..

8.3 Контрольные вопросы……………………………………….

 

 

1. общие сведения о ЭВМ

1.1 Этапы развития ЭВМ

Идея использования программного управления для по­строения устройств, автоматически выполняющих ифмети­ческие вычисления, была впервые высказана английским мате­матиком Ч. Бэббиджем в 1833 г. Однако его попытки построить механическое вычислительное устройство с про­граммным управлением не увенчались успехом.

Фактически эта идея была реализована спустя более чем 100 лет, когда в 1942 г. К. Цюзе в Германии и в 1944 г. Г. Айкен в США построили на электромагнитных реле вычислительные машины с управлением от перфоленты, на которую записывалась программа вычислений.

Идея программного управления вычислительным процес­сом была существенно развита американским математиком Дж. фон Нейманом, который в 1945 г. сформулировал принцип хранимой в памяти программы. Первые ЭВМ с программным управлением и с хранимой в памяти программой появились практически одновременно в Англии, США и СССР.

На протяжении более шести десятилетий электронная вычис­лительная техника бурно развивается. Появи­лись, сменяя друг друга, несколько поколений ЭВМ. Появление новых поколений ЭВМ вызывалось расширением областей и развитием методов их применения, требовавших более производительных, более дешевых и более надежных машин.

Поколение ЭВМ определяется совокупностью взаимосвя­занных и взаимообусловленных существенных особенностей и характеристик, используемых при построении машин, кон­структивно-технологической (в первую очередь элементной) базы и реализуемой в машине архитектуры.

Первое поколение образовали ламповые ЭВМ, промыш­ленный выпуск которых начался в начале 50-х гг. В качестве компонентов логических элементов использовались элек­тронные лампы. ЭВМ этого поколения характеризовались низкой надежностью и высокой стоимостью. Их быстродействие составляло всего 5 ¸ 8 тыс. опер/с.

Второе поколение ЭВМ появилось в конце 50-х годов. Элементной базой второго поколения ЭВМ были полупроводниковые приборы, благодаря чему повысилась их надежность, а производительность возросла до 30 тыс. опер/с (Минск-2, Минск-22, Минск-32, Урал-10, БЭСМ-4, М-220).

В рамках ЭВМ 2-го поколения академик. Лебедев С.А. создал ЭВМ БЭСМ-6 с производительностью до 1 млн. опер/с.

С середины 60-х годов отсчитывается начало появления ЭВМ 3-го поколения. Их элементной базой стали ИМС. В рамках этого поколения фирма IBM создала систему машин IBM-386. В г. Пензе была разработана ЭВМ Урал-16. Однако в это время стало заметно отставание СССР в области элементной базы, что не могло не сказаться и на характеристиках отечественных ЭВМ. Поэтому правительством было принято решение о переходе на производство техники, разработанной фирмой IBM. В СССР она выпускалась под названием Единая Система ЭВМ (EC ЭВМ). Наиболее быстродействующая ЭВМ ряда ЕС ЭВМ выпускалась заводом ВЭМ (г. Пенза). Она выполняла до 5 млн. опер/с.

Конструктивно-технологической основой ЭВМ четвертого поколения являются большие (БИС) и сверхбольшие (СБИС) ИМС.

К четвертому поколению относятся реализованные на СБИС такие новые средства вычислительной техники, как ми­кропроцессоры и создаваемые на их основе микро-ЭВМ. Ми­кропроцессоры и микро-ЭВМ нашли широкое применение в устройствах и системах автоматизации измерений, обработки данных и управления технологическими процессами, при по­строении различных специализированных цифровых устройств и машин.

Вычислительные возможности микро-ЭВМ оказались доста­точными для создания на их основе в рамках ЭВМ четвертого поколения, нового по ряду эксплуатационных характеристик и способу использования типа вычислительных устройств - персональных ЭВМ , получивших в настоящее время широкое распространение.

В ЭВМ четвертого поколения достигается дальнейшее упро­щение контактов человека с ЭВМ путем повышения уровня ма­шинного языка, значительного расширения функций устройств (терминалов), ис­пользуемых человеком для связи с ЭВМ, начинается практиче­ская реализация голосовой связи с ЭВМ. Использование БИС позволяет аппаратурными средствами реализовывать неко­торые функции программ операционных систем (аппаратурная реализация трансляторов с алгоритмических языков высокого уровня и др.), что способствует увеличению производительно­сти машин.

Характерным для крупных ЭВМ четвертого поколения является наличие нескольких процессоров, ориентированных на выполнение определенных операций, процедур или на решение некоторых классов задач. В рамках этого поколения создаются многопроцессорные вычислительные системы с быстродей­ствием в несколько десятков и даже сотен миллионов операций в секунду. К этому же поколению относятся и многопроцессорные управляющие комплексы по­вышенной надежности с автоматическим изменением струк­туры (автоматической реконфигурацией).

Примером крупных вычислительных систем, которые сле­дует отнести к четвертому поколению, является многопроцес­сорный комплекс «Эльбрус-2» с суммарным быстродействием до 100 млн. опер/с, с системой команд, приближенной к языкам высокого уровня, стековой организацией обращений к памяти.

В 90-е годы прошлого века определились контуры нового, пятого поколения ЭВМ. В значительной степени этому способствовали публикации сведений о проекте ЭВМ пятого поколения, разра­батываемом ведущими японскими фирмами и научными орга­низациями, поставившими перед собой цель захвата в 90-х го­дах японской промышленностью мирового лидерства в обла­сти вычислительной техники. Поэтому этот проект часто называют “японским вызовом”. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения, помимо более высокой производительности и надежности при более низкой стоимости должны, обладать качественно новыми свойствами. В первую очередь к ним относятся возможность взаимодействия с ЭВМ при помощи языка, чело­веческой речи и графических изображений, способность си­стемы обучаться, производить ассоциативную обработку ин­формации, делать логические суждения, вести “разумную” беседу с человеком в форме вопросов и ответов. Вычислительные системы пятого поколения должны также “понимать” содержимое базы данных, которая при этом превращается в “базу знаний”, и использовать эти “зна­ния” при решении задач. В настоящее время исследования по подобным проблемам ведутся и в России.

1.2 Характеристики ЭВМ

Электронная вычислительная машина — это комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных средств, начиная со следующих характеристик ЭВМ:

- технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

- характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

- состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Важнейшими характеристиками ЭВМ являются быстродействие и производительность. Эти характеристики тесно связаны. Быстродействие характеризуется числом определенного типа команд, выполняемых ЭВМ за одну секунду. Производительность — это объем работ (например, число стандартных программ), выполняемый ЭВМ в единицу времени.

Определение характеристик быстродействия и производительности представляет собой очень сложную задачу, не имеющую единых подходов и методов решения.

Одной из единиц измерения быстродействия была и остается величина, измеряемая в MIPS (Million Instructions Per Second — миллион операций в секунду). В качестве операций здесь обычно рассматриваются наиболее короткие операции типа сложения. MIPS широко использовалась для оценки больших машин второго и третьего поколений, но для оценки современных ЭВМ применяется достаточно редко по следующим причинам:

- набор команд современных микропроцессоров может включать сотни команд, значительно отличающихся друг от друга длительностью выполнения;

- значение, выраженное в MIPS, меняется в зависимости от особенностей программ;

- значение MIPS и значение производительности могут противоречить друг другу, когда оцениваются разнотипные вычислители (например, ЭВМ, содержащие сопроцессор для чисел с плавающей точкой и без такового).

При решении научно-технических задач в программах резко увеличивается удельный вес операций с плавающей точкой. Опять же для больших однопроцессорных машин в этом случае использовалась и продолжает использоваться характеристика быстродействия, выраженная в MFLOPS (Million Floating Point Operations Per Second — миллион операций с плавающей точкой в секунду). Для персональных ЭВМ этот показатель практически не применяется из-за особенностей решаемых на них задач и структурных характеристик ЭВМ.

Для более точных комплексных оценок существуют тестовые наборы, которые можно разделить на три группы:

- наборы тестов фирм-изготовителей для оценивания качества собственных изделий (например, компания Intel для своих микропроцессоров ввела показатель iCOMP-Intel Comparative Microprocessor Performance);

- стандартные универсальные тесты для ЭВМ, предназначенных для крупномасштабных вычислений (например, пакет математических задач Linpack, по которому ведется список ТОР 500, включающий 500 самых производительных компьютерных установок в мире);

- специализированные тесты для конкретных областей применения компьютеров (например, для тестирования ПК по критериям офисной группы приложений используется тест Winstone97-Business,для группы «домашних компьютеров» — WinBench97-CPUMark32, а для группы ПК для профессиональной работы — 3DWinBench97-UserScene).

Результаты оценивания ЭВМ по различным тестам несопоставимы. Наборы тестов и области применения компьютеров должны быть адекватны.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Она измеряется количеством структурных единиц информации, которые одновременно можно разместить в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Обычно отдельно характеризуют емкость оперативной памяти и емкость внешней памяти. Современные персональные ЭВМ могут иметь емкость оперативной памяти, равную 64 — 256 Мбайтам и даже больше. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Емкость внешней памяти зависит от типа носителя. Так, емкость одной дискеты составляет 1,2; 1,4; 2,88 Мбайта в зависимости от типа дисковода и характеристик дискет. Емкость жесткого диска и дисков DVD может достигать нескольких десятков Гбайтов, емкость компакт-диска (CD-ROM) — сотни Мбайтов (640 Мбайт и выше) и т.д. Емкость внешней памяти характеризует объем программного обеспечения и отдельных программных продуктов, которые могут устанавливаться в ЭВМ. Например, для установки операционной среды Windows 2000 требуется объем памяти жесткого диска более 600 Мбайт и не менее 64 Мбайт оперативной памяти ЭВМ.

Надежность — это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного времени (стандарт ISO ( Международная организация стандартов )-2382/14-78).

Точность — возможность различать почти равные значения (стандарт ISO — 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью ЭВМ, которая в зависимости от класса ЭВМ может составлять 32, 64 и 128 двоичных разрядов.

Во многих применениях ЭВМ не требуется большой точности, например при обработке текстов и документов, при управлении технологическими процессами. В этом случае достаточно воспользоваться 8- и 16-разрядными двоичными кодами. При выполнении же сложных математических расчетов следует использовать высокую разрядность (32, 64 и даже более). Программными способами диапазон представления и обработки данных может быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

Достоверность — свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

1.3 Классификация средств ЭВТ

По виду представления обрабатываемой информации электронная вычислительная техника разделяется на аналоговую и цифровую.

В аналоговых вычислительных машинах (АВМ) обрабатываемая информация представляется соответствующими значениями аналоговых величин: тока, напряжения, угла поворота какого-то механизма и т.п. АВМ обеспечивают приемлемое быстродействие, но не очень высокую точность вычислений (0,001 — 0,01). Подобные машины мало распространены. Они используются в основном в проектных и научно-исследовательских учреждениях в составе стендов по отработке новых образцов техники. По назначению их можно рассматривать как специализированные вычислительные машины.

В настоящее время под словом ЭВМ обычно понимают цифровые вычислительные машины, в которых информация кодируется двоичными кодами чисел. Именно эти машины из-за их универсальности являются самой массовой вычислительной техникой.

По быстродействию ЭВМ можно разделить на:

- суперЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных;

- большие ЭВМ для комплектования ведомственных, территориальных и региональных вычислительных центров;

- средние ЭВМ широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов;

- персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня;

- встраиваемые микропроцессоры (микропроцессорные системы), осуществляющие автоматизацию управления отдельными устройствами и механизмами.

С развитием сетевых технологий все больше начинает использоваться другой классификационный признак, отражающий место и роль ЭВМ в сети, а именно:

- мощные машины и вычислительные системы для управления сетевыми хранилищами информации;

- кластерные структуры;

- серверы;

- рабочие станции;

- сетевые компьютеры.

Мощные машины и вычислительные системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По своим характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры представляют собой многомашинные распределенные вычислительные системы, объединяющие несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

Серверы — это вычислительные машины и системы, управляющие определенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, Web-серверы и др.

Термин “рабочая станция” отражает факт наличия в сетях абонентских пунктов, ориентированных на работу профессиональных пользователей с сетевыми ресурсами. Этот термин как бы отделяет их от ПЭВМ, обеспечивающих работу основной массы непрофессиональных пользователей, работающих обычно в автономном режиме.

Сетевые компьютеры представляют собой упрощенные персональные компьютеры, вплоть до карманных ПК. Их основным назначением является обеспечение доступа к сетевым информационным ресурсам. Вычислительные возможности у них достаточно низкие.

Высокие скорости вычислений, обеспечиваемые ЭВМ различных классов, позволяют перерабатывать и выдавать все большее количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми ЭВМ. Поэтому все современные ЭВМ в настоящее время имеют средства подключения к сетям связи и объединения в системы.

1.4 Структуры ЭВМ

1.4.1 Обобщенная структура ЭВМ

Простейшая структура ЭВМ с локальными шинами между ее устройствами, приведена на рисунке 1.4.1.

 
 

 

 

Рисунок 1.4.1-Обобщенная структура ЭВМ

В состав ЭВМ входят:

- оперативное запоминающее устройство (ОЗУ, более короткое обозначение- оперативная память ОП);

- процессор;

- устройство ввода- вывода (УВВ, другое обозначение- периферийное устройство ПУ);

- пульт контроля и управления (ПКУ).

Процессор предназначен для обработки информации. Он состоит из 2-х частей: УУ - устройство управления (управляющий автомат), и АЛУ- арифметико-логическое устройство.

Обработку информации процессор осуществляет под управлением программы, хранящейся в ОЗУ. В ОЗУ наряду с программой также хранятся и данные, подлежащие обработке. Программа и данные поступают из ОЗУ в процессор по каналу связи между ОЗУ и процессором, называемым в вычислительной технике шиной. Такие же шины соединяют процессор и с другими устройствами ЭВМ.

УВВ предназначено для ввода программ и данных в ОЗУ, то есть они сначала подготавливаются либо в виде перфокарт (ПФК), перфолент (ПФЛ), либо в виде магнитных лент, магнитных дисков и т.п., а затем вводятся в ОП машины. После этого программа запускается на обработку. В современных машинах диалогового режима данные в ОП могут заноситься и непосредственно с клавиатуры.

ПКУ предназначен для ручного пуска различного рода тестовых программ, контроля хода вычислительного процесса или функционирования устройств ЭВМ.

1.4.2 Структура ЭВМ на основе общей шины

При организации ЭВМ на основе общей шины (ОШ) взаимодействие между ее устройствами осуществляется через общую шину, к которой подключены все устройства, входящие в состав ЭВМ.

 
 

 

 

Рисунок 1.4.2- Структура ЭВМ на основе ОШ

 

Взаимодействие между всеми устройствами ЭВМ осуществляется в режиме разделения времени общей шины (т.е. поочередно). Такой способ не обеспечивает (принципиально) высокой пропускной способности, ввиду чего производительность ЭВМ ниже, чем при наличии локальных шин между различными устройствами ЭВМ. Однако простота реализации и возможность построения ОШ с высокой пропускной способностью обеспечили широкое использования такой структуры в персональных ЭВМ (ПК) и микропроцессорных системах (МПС).

1.5 Контрольные вопросы

По каким признакам классифицируются ЭВМ?

В чем различие структур ЭВМ на основе локальных шин и общей шины?

Каково назначение процессора в ЭВМ?

Назначение ОП и УВВ?

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.