Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Многопроцессорные и многомашинные системы



Параллельные ЭВМ часто подразделяются по классификации Флинна на машины типа SIMD (с одним потоком команд при множественном потоке данных) и MIMD (с множественным потоком команд при множественном потоке данных).

Различие понятий многомашинной (ММС) и многопроцессорной (МПС) систем поясняет рис.ММС содержит несколько ЭВМ, каждая из которых имеет свою ОП и работает под управлением своей операционной системы, а также средства обмена информацией между машинами. Реализация обмена информацией происходит, в конечном счете, путем взаимодействия операционных систем машин между собой. Это ухудшает динамические характеристики процессов межмашинного обмена данными. Применение многомашинных систем позволяет повысить надежность вычислительных комплексов. При отказе в одной машине обработку данных может продолжать другая машина комплекса. Однако можно заметить, что при этом оборудование комплекса недостаточно эффективно используется для этой цели.

Этих недостатков лишены многопроцессорные системы. В таких системах (рис,б) процессоры обретают статус рядовых агрегатов вычислительной системы, которые подобно другим агрегатам, таким, как модули памяти, каналы, периферийные устройства, включаются в состав системы в нужном количестве.

Вычислительная система называется многопроцессорной, если она содержит несколько процессоров, работающих с общей ОП (общее поле оперативной памяти) и управляется одной общей операционной системой. Часто в МПС организуется общее поле внешней памяти.

Можно выделить четыре основных типа архитектуры систем параллельной обработки:

1) Конвейерная и векторная обработка.

Основу конвейерной обработки составляет раздельное выполнение некоторой операции в несколько этапов с передачей данных одного этапа следующему. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько операций.

Главный принцип вычислений на векторной машине состоит в выполнении некоторой элементарной операции, которая должна многократно применяться к некоторому блоку данных.Векторные операции обеспечивают полную загрузку вычислительного конвейера.

При выполнении векторной команды одна и та же операция применяется ко всем элементам вектора.

2) Машины типа SIMD.

Состоят из большого числа идентичных процессорных элементов, имеющих собственную память. Все процессорные элементы выполняют одну и ту же программу. В отличие от машин первого типа, это универсальные программируемые ЭВМ, так что задача, решаемая параллельно, может быть достаточно сложной и содержать ветвления. Модели (1) и (2) схожи, и часто обсуждаются как эквивалентные.

3) Машины типа MIMD (мультипроцессор).

В машинах данного типа каждый процессорный элемент (ПЭ) выполняет свою программу достаточно независимо от других процессорных элементов. Процессорные элементы, конечно, должны как-то связываться друг с другом, что делает необходимым более подробную классификацию машин типа MIMD. В мультипроцессорах с общей памятью (сильно связанных мультипроцессорах) имеется память, доступная всем ПЭ. С общей памятью ПЭ связываются с помощью сети обмена. Слабосвязанные многопроцессорные системы – машины с локальной памятью, связанные с помощью сети обмена.

4) Многопроцессорные машины с SIMD-процессорами.

Представляют собой многопроцессорные системы, в которых в качестве процессоров используются процессоры типов 1 и 2.

Особенностью многопроцессорной системы является сеть обмена, с помощью которой процессоры соединяются друг с другом или с памятью.

Системы прерываний.

Прерывание – это инициируемый определенным образом процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возобновлением выполнения прерванной программы.

Механизм прерываний позволяет обеспечить наиболее эффективное управление не только внешними устройствами, но и программами. Некоторые операционные системы используют механизм прерываний не только для обслуживания внешних устройств, но и для предоставления своих услуг. Прерывания могут быть внешними и внутренними. Внешние прерывания вызываются внешними по отношению к микропроцессору событиями. На них формируются внешние по отношению к микропроцессору сигналы, которые извещают микропроцессор о том, что некоторое внешнее устройство просит уделить ему внимание. Внутренние прерывания возникают внутри микропроцессора во время вычислительного процесса. К их возбуждению приводит одна из двух причин:

– ненормальное внутреннее состояние микропроцессора, возникшее при обработке некоторой команды программы;

– обработка машинной команды «int xx». Такой тип прерываний называется программным. Это – планируемые прерывания, так как с их помощью программист обращается в нужное для него время за обслуживанием своих запросов либо к операционной системе, либо к BIOS, либо к собственным программам обработки прерываний.

3.Кэш-память.

Это высокоскоростная память произвольного доступа, используемая процессором компьютера для временного хранения информации. Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды «ближе» к процессору, откуда их можно быстрее получить. Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой. Компьютеры хранят данные в аналогичной иерархии. Когда приложение начинает работать, данные и команды переносятся с медленного жесткого диска в оперативную память произвольного доступа (Dynamic Random Access Memory -- DRAM), откуда процессор может быстро их получить. Оперативная память выполняет роль кэша для жесткого диска.

Для достаточно быстрых компьютеров необходимо обеспечить быстрый доступ к оперативной памяти, иначе микропроцессор будет простаивать и быстродействие компьютера уменьшится. Для этого такие компьютеры могут оснащаться кэш-памятью, т.е. "сверхоперативной" памятью относительно небольшого объема (обычно от 64 до 256 кбайт), в которой хранятся наиболее часто используемые участки оперативной памяти. Кэш-память располагается "между" микропроцессором и оперативной памятью, и при обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные содержаться в кэш-памяти, среднее время доступа к памяти уменьшается.





Билет №9

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.