Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Физические конструкции



В истории обороны Ленинграда, когда город 29 месяцев, почти 2 года, был во вражеском кольце, и в деятельности ленинградских ученых во время блокады есть эпизод, который связан с «Дорогой жизни». Эта дорога пролегала по льду замерзшего Ладожского озера: была проложена автотрасса, связывающая окруженный врагом город с Большой землей. От нее зависела жизнь.

Вскоре выяснилось на первый взгляд совершенно необъяснимое обстоятельство: когда грузовики шли в Ленинград максимально нагруженные, лед выдерживал, а на обратном пути, когда они вывозили больных и голодных людей, т.е. имели значительно меньший груз, лед часто ломался, и машины проваливались под лед. Руководство города поставило перед учеными задачу: выяснить, в чем дело, и дать рекомендации, избавляющие от этой опасности. Ученые провели исследования и выяснили причины.

Павел Павлович Кобеко установил: главную роль играет деформация льда. Эта деформация и распространяющиеся от нее по льду упругие волны

зависят от скорости движения транспорта. Критическая скорость 35 км/ч: если транспорт шел со скоростью, близкой к скорости распространения ледовой волны, то даже одна машина могла вызвать гибельный резонанс и

пролом льда. По возможности не нужно везти машины колоннами, не делать обгонов на льду. Если автомобили движутся по параллельным путям, то расстояние между ними должно быть более 70 - 80 метров. Были рассчитаны динамические нагрузки на лёд. Установлено, при каких условиях танки смогут пройти по Неве. Большую роль играла интерференция волн сотрясений, возникающих при встрече машин или обгоне; сложение амплитуд колебания вызывало разрушение льда.

Н. М. Рейнов сконструировал автоматическую установку, которая регистрировала механические колебания ледяного покрова. Был изобретён прогибограф - прибор, способный регистрировать колебания льда продолжительностью от 0,1 с до суток.

Во время боёв в районе Сенявина наши войска захватили большой склад стальных баллонов. Учёные предложили превратить их в мощные зажигательные мины. П. П. Кобеко составил зажигательную смесь, которую могли выпускать в городе из наличного материала. Потребовались и миномёты, способные стрелять новыми снарядами. Их тоже изготовили в Ленинграде.

Пожалуй, самый весомый, главный вклад в оборону Ленинграда наши учёные внесли своими знаниями. Люди науки в самых невероятных условиях искали и находили новые средства и ресурсы для борьбы с врагом. В Физтехе была создана база для испытания новых образцов боевой техники, разрабатывались способы сделать землю, из которой возводятся укрепления, водонепроницаемой. В институте железнодорожного транспорта испытывали рельсы, балки, стальные плиты, подбирали материал, из которого лучше и быстрее можно сваривать противотанковые ежи, делать покрытия для дотов. Многие укреплённые районы вокруг Ленинграда проектировали академики и профессора архитектуры.

Над маскировкой Смольного, как и других военных объектов города, много поработали учёные и художники. Предстояло найти такую окраску, которую не мог бы отличить от зелени деревьев ни глаз, ни оптический прибор даже при спектральном анализе. Осенью 1941 года многие ленинградцы носили небольшие значки, фосфоресцирующие в темноте как светлячки. Они помогали людям ориентироваться на тёмных улицах. Светящиеся составы требовались, прежде всего, для многочисленных приборов - зенитчикам, артиллеристам - полевикам, морякам балтийцам. Производство светящихся составов во время войны организовал в Радиевом институте А. Б. Вериго.

Сотрудники института стали добывать радий с поверхности стен, с полов и потолков тех комнат, где раньше применялся радий длянаучных исследований, пустили в дело отходы. И они обеспечили светосоставами фронт.

Наши физики умели находить применение на практике самых, казалось бы, отвлеченных теоретических знаний.

Пример тому, каталитическая грелка, которая была создана отделом в конце 1939 года, когда шли бои на Карельском перешейке.

Эта грелка спасла жизнь многим нашим воинам

и в войну с белофиннами, и в годы Великой Отечественной войны. Советской промышленностью выпускалась грелка бензиновая каталитическая ГК-1, которая при полной заправке могла вырабатывать тепло в течение 8—14 часов с температурой до 60° С. Грелка состоит из резервуара, заполненного ватой, насадки с сетчатым патроном, в котором помещен катализатор, и крышки с вентиляционными отверстиями.

Принцип работы грелки основан на выделении тепла при беспламенном окислении паров бензина в присутствии катализатора. Пары бензина из резервуара проходят через каталитический патрон, где окисляются кислородом воздуха (сгорают без пламени) на поверхности разогретого катализатора. Продукты окисления выходят в вентиляционные отверстия крышки. Одновременно через вентиляционные отверстия крышки к поверхности катализатора поступает воздух, содержащий кислород. Каталитическая сетка (катализатор) имеет вид фитиля и находится внутри стального сетчатого патрона, сделана из платины — это самая важная деталь грелки.

В 1942-1943 годах под руководством профессора И.И. Китайгородского была решена сложнейшая научно-техническая задача - разработан рецепт получения бронестекла, прочность которого в 25 раз превосходила прочность обычного стекла. На его основе удалось создать прозрачную пуленепробиваемую броню для кабин самолетов. Наши летчики получили возможность более безопасного обзора пространства во время боя.

Коллективы Государственного оптического института под руководством Сергея Ивановича Вавилова и Института точной механики и оптики провели ряд исследований, которые способствовали обеспечению нашей армии, авиации и флота первоклассными оптическими приборами - дальномерами, стереотрубами, биноклями, перископами, прицелами.

Сотрудники Института морского флота придумали простой прибор, которому дали название «карманный перископ». Прибор состоял из двух маленьких зеркал (40х40 миллиметров), заделанных в раздвижное приспособление. В сложенном виде оно он помещался в кармане гимнастерки, а раздвинуть его можно было на треть метра. Прибор позволял бойцам вести постоянное наблюдение за противником, видеть все, что делается в поле, не поднимая головы из окопа, и, таким образом, застраховать себя от снайперских пуль противника.

Во время боев в районе Синявина наши войска захватили большой склад стальных баллонов. Судя по всему, они были рассчитаны на отравляющие газы. Комиссия предложила превратить их в мощные зажигательные мины. Стенки у баллонов тонкие, а емкость большая. Павел Павлович Кобеко тут же составил простую и эффективную зажигательную смесь, которую могли выпускать в городе из наличных материалов.

11 февраля 1943 г. Сталин подписал постановление Правительства СССР об организации работ по использованию атомной энергии в военных целях. Возглавил это дело В.М. Молотов.

По рекомендации А.Ф. Иоффе общее научное руководство было поручено И.В. Курчатову. Ю.Б.

Харитон возглавил исследования по созданию конструкции ядерного заряда.

9 мая 1945 г. в 21.00 из тысячи репродукторов, установленных по всей Москве, раздался голос Верховного Главнокомандующего, поздравившего

народы СССР с Победой. Диктор всесоюзного радио Юрий Левитан взволнованно-торжественным голосом зачитал последний приказ (приказ № 369), в котором в ознаменование разгрома врага предписывалось произвести салют тридцатью артиллерийскими залпами из тысячи орудий. В воздух взвилась красная сигнальная ракета. Где были использованы соли стронция.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.