Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Качество сервиса. Параметры качества сервиса. Категории сервиса



КАЧЕСТВО ОБСЛУЖИВАНИЯ В ATM

Технология ATM способна поддерживать различные уровни качества услуг для каждого установленного соединения. Для того чтобы гарантировать заданные характеристики для новых и уже открытых соединений, сеть ATM реализует определенные механизмы контроля и управления потоками, а также предотвращения перегрузок — все вместе они собирательно называются управлением трафиком. Управление трафиком позволяет сети ATM гарантировать определенное качество обслуживания для индивидуальных соединений и защитить уже открытые соединения от снижения их производительности.

Таблица 1. Влияние параметров качества обслуживания на сетевой трафик
Тип трафика Паpаметры качества обслуживания и их влияние на трафик
  Задержка (CTD) Вариация задержки (CDV) Процент потерянных ячеек (CLR)
Передача речи Значительное; средние задержки требуют подавления эха,а длительные — неприемлемы. Значительное; большое значение этого параметра приводит к увеличению значения CTD и размера необходимых буферов. Умеренное; потерянные данные параметра приводит не передаются вновь, хотя при этом увеличению значения CTD и страдает качество.
Видеоконференции Значительное; длительные задержки неприемлемы Значительное; большое значение этого параметра приводит к увеличению значения CTD. Умеренное; потерянные данные не передаются вновь, хотя при этом к увеличению значения CTD. и страдает качество.
Видео по требованию Умеренное; отправитель должен иметь возможность ответить на команды удаленного управления. Значительное; большое значение этого параметра приводит к увеличению значения CTD. Умеренное; потерянные данные не передаются вновь, хотя при этом и страдает качество.
Данные Незначительное; соединение характеризуется длительными тайм-аутами и большими окнами повторной передачи. Незначительное; получатель обычно имеет большую буферную память. Значительное; потеря пакетов (или нескольких ячеек) приводит к повторной передаче.

Технология ATM позволяет поддерживать работу различных типов приложений, будь то видео, голос, данные или их комбинация, по одной и той же сетевой инфраструктуре. Это очень специфичная особенность, так как требования разных приложений к сетевым ресурсам могут отличаться весьма существенно. Например, приложения электронной почты не налагают никаких ограничений на время доставки сообщений получателю. В таком случае все, что требуется приложению, — это выделение ему минимальной пропускной способности, когда необходимо прислать письма. Другим примером может быть приложение для проведения видеоконференций в реальном времени. Оно требует не только значительной пропускной способности, но также и минимизации времени доставки ячеек с фрагментами видеоизображений до получателя. Кроме того, приложение не будет работать корректно, если ячейки поступают к получателю через нерегулярные интервалы времени. В данном случае к сети предъявляются очень жесткие требования по многим параметрам. Все эти рассуждения говорят о важности проблемы управления трафиком в сети ATM.

Для успешной поддержки различных приложений и качества обслуживания в сети ATM конечным пользователем и сетью должны быть приняты некоторые допущения.

Сеть ATM имеет возможность открывать новые соединения и предоставлять требуемое ими качество услуг (в зависимости от наличия ресурсов) без негативного влияния на уже открытые соединения. В противном случае запрос на установление нового соединения отклоняется. Пользовательское приложение и сеть заключают во время установления соединения некое соглашение по поводу характеристик трафика этого приложения, в том числе относительно максимальной и минимальной скорости передачи ячеек и качества услуг. Сеть ATM имеет право отбрасывать ячейки, если из-за них трафик через данное соединение выходит за ранее согласованные параметры. Отбраковка ячеек с соответствующей меткой может быть произведена в любой момент. Сеть ATM предоставляет доступ и тем пользователям, кто претендует на использование незадействованных на данный момент сетевых ресурсов. Однако при обнаружении перегрузки либо некоторые ячейки будут отбрасываться, либо пользователь получит запрос с требованием о снижении скорости передачи ячеек в сеть.

Перечисленные допущения формируют базу для реализации технологий и методов, применяемых для управления трафиками в сетях ATM. Цели управления трафиком ATM достаточно просты:

поддержка разнообразных типов трафика на различных скоростях; удовлетворение требований к качеству услуг для каждого соединения; оптимизация использования сетевых ресурсов; предоставление конечному пользователю необходимой производительности сети.

Управление трафиком как общую систему можно условно разделить на три составляющие:

1. систему составления и заключения соглашения об уровне сервиса между пользователем и сетью по необходимому объему и качеству предоставляемых услуг;

2. систему единого управления потоками ячеек от различных пользователей;

3. систему контроля параметров трафика.

При этом каждая из приведенных составляющих системы управления трафиком может, в свою очередь, состоять из нескольких компонентов, отвечающих за выполнение конкретных функций. Рисунок 1 показывает обобщенную функциональную схему системы управления трафиком.


Рисунок 1. Обобщенная функциональная схема системы управления трафиком.

Контроль за параметрами трафика, состоящий из системы контроля за действиями пользователей и системы контроля за сетью, определяется как совокупность действий сети по предотвращению перегрузок, а контроль за перегрузками — как совокупность мер по уменьшению длительности состояния перегрузки и минимизации его последствий. Выполнение контрольных функций производится в четко определенное время и в четко определенном месте сети. Например, проверка превышения потоком ячеек максимальной скорости OC-3 выполняется на входящем коммутаторе ATM, причем она должна занимать меньше 3 мкс, так как передача одной ячейки со скоростью 155 Мбит/с осуществляется за 2,73 мкс.

Исходя из выделенных основных составляющих системы управления трафиком, основные задачи этой системы можно определить следующим образом.

1. Заключение контракта с сетью относительно характеристик трафика таким образом, чтобы требования приложения были удовлетворены в максимальной степени.

2. Оптимальное выделение и управление ресурсами сети для гарантированного выполнения заключенного контракта.

3. Предотвращение перегрузок.

Обобщая приведенные задачи, мы можем сказать, что вся система управления трафиком направлена на обеспечение работы всех пользователей без наступления перегрузок в сети. Перегрузка определяется как состояние, в котором компоненты сети ATM — будь то коммутаторы, физические каналы связи или конечные станции — не могут обеспечить требуемых характеристик для всех открытых соединений, в результате основные показатели качества услуг начинают резко снижаться. При этом перегрузки могут иметь как локальный, так и глобальный характер, и их причинами могут служить:

взрывообразное увеличение объемов входного трафика; наступление нештатной ситуации на приемной стороне; недостаточный объем буферной памяти коммутаторов; малая производительность промежуточных устройств; различные аварии оборудования.

Вариантов реализации механизмов предотвращения перегрузок существует достаточно много. Одни методы предполагают выделение максимальной пропускной способности для соединений, хотя это может привести к нерациональному использованию сетевых ресурсов. Другие методы полагаются на буферную память коммутаторов, но при этом стоимость и сложность самих коммутаторов значительно повышаются. Третьи вовлекают в свою работу и сеть, и получателя данных для формирования извещений отправителю с просьбой о снижении им скорости отправки ячеек в сеть при превышении заданных пороговых значений. И, естественно, ячейки могут отбрасываться на входе в сеть, если они способны вызвать перегрузку из-за превышения согласованной скорости передачи. Организациями по стандартизации определены основные механизмы (методы) управления трафиком. Эти механизмы описаны в документе ATM Forum Traffic Management 4.0 и в рекомендации I.371 комитета ITU.

Следует отметить, что система управления трафиком должна функционировать на всем пути следования ячеек пользователя. На входе в сеть ATM — для согласования реальных характеристик трафика с контрактом, в середине сети — для сглаживания искажений, вносимых сетевыми устройствами, и на выходе из сети — для восстановления исходного формата трафика.

Можно сказать, что основная цель управления трафиком состоит именно в оптимизации использования сетевых ресурсов, в обеспечении качества услуг для существующих соединений, в предотвращении наступления состояния перегрузки в сети и в ограничении ее последствий. Для выполнения поставленных целей организации по стандартизации определили и описали в своих стандартах механизмы управления трафиком. Некоторые из них просты в реализации и подходят для всех предоставляемых сервисов ATM, а другие более сложны и зависят от конкретного набора сервисных услуг. Основные механизмы управления трафиком таковы:

1. CAC (Connection Admission Control) — контроль за установлением соединения;

2. UPC (Usage Parameter Control)/NPC (Networks Parameter Control) — контроль за использованием пропускной способности сети;

3. Traffic Shaping — формирование трафика;

4. Priority Control — контроль приоритетов;

5. ABR Flow Control — контроль потока ABR;

6. Frame Discard — отбраковка пакетов;

7. Selective Cell Discard — выборочная отбраковка ячеек.

ЗАКЛЮЧЕНИЕ КОНТРАКТА

Таблица 2. Основные параметры трафика
Аббревиатура Параметр трафика Описание
PCR Пиковая скорость передачи (Peak Cell Rate) Максимальное количество ячеек, которое отправителю разрешено передавать за единицу времени.
SCR Нормальная скорость передачи (Sustainable Cell Rate) Среднее количество ячеек, которое отправителю разрешено передавать за единицу времени.
MBS Максимальный размер пакета (Maximum Burst Size) Количество ячеек, которое отправитель имеет право передать в сеть с пиковой скоростью.
MCR Минимальная скорость передачи (Minimum Cell Rate) Минимальное количество ячеек, которое отправитель должен отправлять за единицу времени.
Параметры обратной связи (feedback) Набор параметров, относящихся к сервису с доступной скоростью передачи (Available Bit Rate, ABR) и позволяющих отправителю трафика установить количество доступных сетевых ресурсов. Обратная связь реализуется с помощью двух основных механизмов — явного оповещения о перегрузке (Explicit Forward Congestion Indication, EFCI) и явной индикации скорости (Explicit Rate, ER).

Перед рассмотрением основ составления контракта относительно характеристик трафика мы хотели бы сделать небольшое отступление и коснуться соглашений об уровне сервиса (Service Level Agreement, SLA). По сути все они могут рассматриваться как некие контракты, заключаемые между двумя сторонами, согласно которым одна из этих сторон (провайдер услуг, информационный отдел, администратор сети и т. д.) обязуется предоставить другой стороне (организации, рабочей группе, конкретному пользователю и т. д.) определенный уровень сервиса в своей сети. Разница между типами SLA — в перечне количественных и качественных характеристик предоставляемых услуг.

Для сетей frame relay и IP первые SLA были предложены в 1996 году компанией Intermedia Communications. В основе этих соглашений лежали четыре показателя:

1. гарантированная доступность сети;

2. доставка кадров;

3. задержка при передаче;

4. время восстановления сети.

По мере того как все большее число операторов связи стали заключать подобные соглашения, SLA все более уточнялись и распространялись на различные классы услуг.

Для технологии ATM аналогом SLA может служить трафик-контракт, свой для каждого виртуального соединения. Выполнение трафик-контракта контролируется интерфейсом UNI, а его содержание определяется, в основном, следующими пунктами:

ожидаемый от сети уровень качества услуг; параметры трафика, т. е. характеристики потока ячеек; контрольные правила и инструкции по интерпретации параметров трафика.

Трафик-контракт пользователя определяется набором параметров качества услуг. В общем случае трафик-контракт должен содержать соглашения по следующим пунктам.

Параметры потока ячеек отправителя в зависимости от услуг. Предоставляемое сетью качество услуг. Правила проверки соответствия реальных параметров трафика заявленным. Определение типа соединения, предоставляемого для транспортировки трафика.

Форум ATM определил три основных параметра качества услуг, которые должны согласовываться сетевыми устройствами при установлении соединения: задержка при передаче ячеек (Cell-Transfer Delay, CTD), вариация задержки (Cell-Delay Variation, CDV) и процент потерянных ячеек (Cell-Loss Ratio, CLR) (см. Рисунок 2).


Рисунок 2. Параметры качества обслуживания в сети ATM.

Параметр CTD характеризует максимальную задержку в сети при передаче ячеек от отправителя к получателю. Конкретная задержка складывается из задержек при передаче по линии связи между устройствами и задержек на каждом из промежуточных коммутаторов в ATM.

Параметр CDV определяется разницей во времени между максимальной и минимальной задержкой при доставке ячеек от отправителя к получателю. Вариация задержки зависит от процедуры мультиплексирования в один физический канал связи потоков ячеек, принадлежащих множеству виртуальных соединений, и непостоянства задержки, вносимой очередями коммутаторов ATM.

Параметр CLR определяется отношением числа потерянных ячеек к общему числу переданных ячеек. Данный параметр зависит от физического канала связи и алгоритмов управления перегрузками, применяемых в коммутаторах ATM.

Таблица 3. Типы трафика и соответствующие службы передачи данных
Тип трафика CBR rtVBR nrtVBR UBR ABR
Аудио- и видеоинформация X        
Сжатая аудио- или видеоинформация (алгоритмы группы MPEG) X X      
Данные X X X X X

Для примера мы покажем степень влияния параметров качества услуг на различные типы сетевого трафика в сети ATM (Таблица 1).

Передача речи характеризуется значительной чувствительностью к величине задержки. Это связано с тем, что возникновение даже небольших задержек в сети требует применения специальных методов подавления эха. Большие задержки приводят к полной непригодности системы из-за невозможности понимания абонентами речи друг друга. Вариация задержки также оказывает значительное влияние на голосовой трафик. Увеличение размеров буферов в такой системе приводит к росту задержки в сети. Процент потерянных ячеек при таком виде трафика не столь существенен, так как потерянные ячейки повторно отправителем не передаются, хотя данное обстоятельство и приводит к ухудшению качества связи. Влияние этих трех параметров на трафик приложений для видеоконференций аналогично.

Таблица 4. Параметры для каждой из служб
Тип трафика CBR rtVBR nrtVBR UBR ABR
Параметры качества обслуживания
CDV X X      
CTD X X      
CLR X X X   X
Параметры трафика
PCR X X X    
SCR, MBS   X X    
MCR         X
Feedback (обратная связь)         X

Трафик приложений доставки видео по требованию характеризуется меньшей чувствительностью к величине задержки, так как отправитель должен иметь возможность реагировать на команды удаленного управления. Следует отметить, что и в этом случае уменьшение вариации задержки приводит только к положительным результатам. Как и в первых трех случаях, процент потерянных ячеек оказывает малое влияние на данный вид трафика.

Особое место занимает трафик, генерируемый при передаче больших объемов данных. При этом величина задержки практически не имеет значения по причине нерегулярного характера трафика и наличия больших временных окон для организации повторной передачи. Вариация задержки сглаживается наличием большой буферной памяти у получателя данных. Зато большое значение имеет процент потерянных ячеек: большие пакеты данных не могут целиком поместиться в одну ячейку ATM, поэтому они разбиваются на отдельные фрагменты, которые затем упаковываются в ячейки. Отсюда следует, что потеря в сети хотя бы одной ячейки приводит к тому, что данные на приемной стороне не смогут быть восстановлены.

ПАРАМЕТРЫ ТРАФИКА

Спецификация управления трафиком определяет различные параметры, которые используются для описания характера трафика. Совместно с параметрами качества услуг они определяют категории сервиса. (Такая категория сервиса, как ABR, описывается с помощью ряда специальных параметров. Они обобщенно называются параметрами обратной связи.) Таблица 2 содержит описание основных параметров трафика.

КАТЕГОРИИ СЕРВИСА В СЕТЯХ ATM

Исходя из приведенных выше параметров трафика и параметров качества услуг, Форум ATM определил пять категорий сервиса: передачу с постоянной скоростью (служба CBR — Constant Bit Rate), передачу с переменной скоростью в реальном времени (служба rtVBR — real-time Variable Bit Rate), передачу с переменной скоростью не в реальном времени (служба nrtVBR — non-real-time Variable Bit Rate), передачу с не заданной заранее (неопределенной) скоростью (служба UBR — Unspecified Bit Rate) и передачу с доступной скоростью (служба ABR — Available Bit Rate).

Наибольший практический интерес представляют службы CBR и ABR, так как они позволяют выделять для каждого виртуального соединения достаточный объем сетевых ресурсов. При этом служба CBR использует для своей работы гарантированные ресурсы, а служба ABR задействует оставшиеся невостребованные ресурсы сети. Такое взаимоотношение между двумя службами позволяет полностью загружать сетевое оборудование.

Таблица 3 показывает, какие службы АТМ для передачи какого трафика предназначены, а Таблица 4 — какие параметры трафика и качества обслуживания определены для каждой службы.

Профиль трафика с постоянной скоростью можно упрощенно изобразить на графике, определяющем зависимость скорости передачи от времени (см. Рисунок 3). Ввиду того, что скорость такого трафика предсказуема, он является наиболее простым типом трафика с точки зрения гарантии необходимых значений параметров качества обслуживания, причем механизма обратной связи ему не требуется.


Рисунок 3. Профиль трафика CBR.

Оба варианта служб VBR (nrtVBR и rtVBR) характеризуются двумя скоростями передачи: пиковой скоростью (PCR), с которой отправитель может передавать ограниченное число ячеек (но не более заданной величины MBS), и нормальной скоростью (SCR), с которой ячейки могут передаваться неограниченно долго (см. Рисунок 4). При этом передача данных регулируется таким образом, чтобы средняя скорость не превышала допустимую. Иными словами, количество ячеек в области Б должно быть всегда меньше или равно количеству пустых ячеек (служащих для поддержания нормальной скорости) в области А. Обратная связь здесь также не используется. Основное различие между передачей с переменной скоростью в реальном времени (rtVBR) и передачей не в реальном времени (nrtVBR) заключается в том, что для первой службы должны задаваться дополнительные параметры качества услуг.


Рисунок 4. Профиль трафика VBR.

Служба UBR не предоставляет гарантий относительно качества услуг или пропускной способности. Использование этой службы предполагает наличие протокола более высокого уровня, например такого, как ТСР, чтобы он мог обнаружить и исправить ошибки при передаче. Кроме того, TCP позволяет регулировать скорость передачи в зависимости от количества потерянных пакетов.

Текущая версия пользовательского интерфейса UNI 3.0/3.1 дает возможность приложениям запрашивать определенную категорию сервиса во время установления виртуального соединения. Для его успешной работы приложению необходимо указать желаемые характеристики трафика во время запроса определенной категории. К их числу относятся: пиковая и средняя скорости передачи ячеек, терпимость приложения к переменной задержке и т. д. Категории сервиса, которые устанавливаются административно, определяют конкретные значения качества услуг и параметров трафика. При этом сеть будет игнорировать любой запрос на установление соединения, если запрашиваемое качество услуг не может быть поддержано. Приложение может повторить свой запрос позже, с указанием тех же самых или иных параметров качества услуг. Следует отметить, что после установления соединения согласованные параметры не могут быть изменены.

Новая версия пользовательского интерфейса ATM — UNI 4.0 — предоставляет пользователям возможность указывать конкретные значения параметров качества услуг в рамках, определенных для каждой категории сервиса. Отличие состоит в том, что приложение уже не ограничено предопределенными сетевым администратором параметрами качества услуг. Такое решение, помимо всего прочего, призвано сгладить проблемы совместимости между различными провайдерами услуг ATM, так как администраторам разных сетей не потребуется заранее согласовывать параметры качества услуг; данная задача будет возлагаться на конкретные приложения.

25. Требования, выполнение которых позволяют обеспечить качество выполнения основной функции вычислительных сетей. Основные подходы к обеспечению необходимым качеством сервиса в сети.

КАЧЕСТВО ОБСЛУЖИВАНИЯ В ATM

Технология ATM способна поддерживать различные уровни качества услуг для каждого установленного соединения. Для того чтобы гарантировать заданные характеристики для новых и уже открытых соединений, сеть ATM реализует определенные механизмы контроля и управления потоками, а также предотвращения перегрузок — все вместе они собирательно называются управлением трафиком. Управление трафиком позволяет сети ATM гарантировать определенное качество обслуживания для индивидуальных соединений и защитить уже открытые соединения от снижения их производительности.

Таблица 1. Влияние параметров качества обслуживания на сетевой трафик
Тип трафика Паpаметры качества обслуживания и их влияние на трафик
  Задержка (CTD) Вариация задержки (CDV) Процент потерянных ячеек (CLR)
Передача речи Значительное; средние задержки требуют подавления эха,а длительные — неприемлемы. Значительное; большое значение этого параметра приводит к увеличению значения CTD и размера необходимых буферов. Умеренное; потерянные данные параметра приводит не передаются вновь, хотя при этом увеличению значения CTD и страдает качество.
Видеоконференции Значительное; длительные задержки неприемлемы Значительное; большое значение этого параметра приводит к увеличению значения CTD. Умеренное; потерянные данные не передаются вновь, хотя при этом к увеличению значения CTD. и страдает качество.
Видео по требованию Умеренное; отправитель должен иметь возможность ответить на команды удаленного управления. Значительное; большое значение этого параметра приводит к увеличению значения CTD. Умеренное; потерянные данные не передаются вновь, хотя при этом и страдает качество.
Данные Незначительное; соединение характеризуется длительными тайм-аутами и большими окнами повторной передачи. Незначительное; получатель обычно имеет большую буферную память. Значительное; потеря пакетов (или нескольких ячеек) приводит к повторной передаче.

Технология ATM позволяет поддерживать работу различных типов приложений, будь то видео, голос, данные или их комбинация, по одной и той же сетевой инфраструктуре. Это очень специфичная особенность, так как требования разных приложений к сетевым ресурсам могут отличаться весьма существенно. Например, приложения электронной почты не налагают никаких ограничений на время доставки сообщений получателю. В таком случае все, что требуется приложению, — это выделение ему минимальной пропускной способности, когда необходимо прислать письма. Другим примером может быть приложение для проведения видеоконференций в реальном времени. Оно требует не только значительной пропускной способности, но также и минимизации времени доставки ячеек с фрагментами видеоизображений до получателя. Кроме того, приложение не будет работать корректно, если ячейки поступают к получателю через нерегулярные интервалы времени. В данном случае к сети предъявляются очень жесткие требования по многим параметрам. Все эти рассуждения говорят о важности проблемы управления трафиком в сети ATM.

Для успешной поддержки различных приложений и качества обслуживания в сети ATM конечным пользователем и сетью должны быть приняты некоторые допущения.

Сеть ATM имеет возможность открывать новые соединения и предоставлять требуемое ими качество услуг (в зависимости от наличия ресурсов) без негативного влияния на уже открытые соединения. В противном случае запрос на установление нового соединения отклоняется. Пользовательское приложение и сеть заключают во время установления соединения некое соглашение по поводу характеристик трафика этого приложения, в том числе относительно максимальной и минимальной скорости передачи ячеек и качества услуг. Сеть ATM имеет право отбрасывать ячейки, если из-за них трафик через данное соединение выходит за ранее согласованные параметры. Отбраковка ячеек с соответствующей меткой может быть произведена в любой момент. Сеть ATM предоставляет доступ и тем пользователям, кто претендует на использование незадействованных на данный момент сетевых ресурсов. Однако при обнаружении перегрузки либо некоторые ячейки будут отбрасываться, либо пользователь получит запрос с требованием о снижении скорости передачи ячеек в сеть.

Перечисленные допущения формируют базу для реализации технологий и методов, применяемых для управления трафиками в сетях ATM. Цели управления трафиком ATM достаточно просты:

поддержка разнообразных типов трафика на различных скоростях; удовлетворение требований к качеству услуг для каждого соединения; оптимизация использования сетевых ресурсов; предоставление конечному пользователю необходимой производительности сети.

Управление трафиком как общую систему можно условно разделить на три составляющие:

1. систему составления и заключения соглашения об уровне сервиса между пользователем и сетью по необходимому объему и качеству предоставляемых услуг;

2. систему единого управления потоками ячеек от различных пользователей;

3. систему контроля параметров трафика.

При этом каждая из приведенных составляющих системы управления трафиком может, в свою очередь, состоять из нескольких компонентов, отвечающих за выполнение конкретных функций. Рисунок 1 показывает обобщенную функциональную схему системы управления трафиком.


Рисунок 1. Обобщенная функциональная схема системы управления трафиком.

Контроль за параметрами трафика, состоящий из системы контроля за действиями пользователей и системы контроля за сетью, определяется как совокупность действий сети по предотвращению перегрузок, а контроль за перегрузками — как совокупность мер по уменьшению длительности состояния перегрузки и минимизации его последствий. Выполнение контрольных функций производится в четко определенное время и в четко определенном месте сети. Например, проверка превышения потоком ячеек максимальной скорости OC-3 выполняется на входящем коммутаторе ATM, причем она должна занимать меньше 3 мкс, так как передача одной ячейки со скоростью 155 Мбит/с осуществляется за 2,73 мкс.

Исходя из выделенных основных составляющих системы управления трафиком, основные задачи этой системы можно определить следующим образом.

1. Заключение контракта с сетью относительно характеристик трафика таким образом, чтобы требования приложения были удовлетворены в максимальной степени.

2. Оптимальное выделение и управление ресурсами сети для гарантированного выполнения заключенного контракта.

3. Предотвращение перегрузок.

Обобщая приведенные задачи, мы можем сказать, что вся система управления трафиком направлена на обеспечение работы всех пользователей без наступления перегрузок в сети. Перегрузка определяется как состояние, в котором компоненты сети ATM — будь то коммутаторы, физические каналы связи или конечные станции — не могут обеспечить требуемых характеристик для всех открытых соединений, в результате основные показатели качества услуг начинают резко снижаться. При этом перегрузки могут иметь как локальный, так и глобальный характер, и их причинами могут служить:

взрывообразное увеличение объемов входного трафика; наступление нештатной ситуации на приемной стороне; недостаточный объем буферной памяти коммутаторов; малая производительность промежуточных устройств; различные аварии оборудования.

Вариантов реализации механизмов предотвращения перегрузок существует достаточно много. Одни методы предполагают выделение максимальной пропускной способности для соединений, хотя это может привести к нерациональному использованию сетевых ресурсов. Другие методы полагаются на буферную память коммутаторов, но при этом стоимость и сложность самих коммутаторов значительно повышаются. Третьи вовлекают в свою работу и сеть, и получателя данных для формирования извещений отправителю с просьбой о снижении им скорости отправки ячеек в сеть при превышении заданных пороговых значений. И, естественно, ячейки могут отбрасываться на входе в сеть, если они способны вызвать перегрузку из-за превышения согласованной скорости передачи. Организациями по стандартизации определены основные механизмы (методы) управления трафиком. Эти механизмы описаны в документе ATM Forum Traffic Management 4.0 и в рекомендации I.371 комитета ITU.

Следует отметить, что система управления трафиком должна функционировать на всем пути следования ячеек пользователя. На входе в сеть ATM — для согласования реальных характеристик трафика с контрактом, в середине сети — для сглаживания искажений, вносимых сетевыми устройствами, и на выходе из сети — для восстановления исходного формата трафика.

Можно сказать, что основная цель управления трафиком состоит именно в оптимизации использования сетевых ресурсов, в обеспечении качества услуг для существующих соединений, в предотвращении наступления состояния перегрузки в сети и в ограничении ее последствий. Для выполнения поставленных целей организации по стандартизации определили и описали в своих стандартах механизмы управления трафиком. Некоторые из них просты в реализации и подходят для всех предоставляемых сервисов ATM, а другие более сложны и зависят от конкретного набора сервисных услуг. Основные механизмы управления трафиком таковы:

1. CAC (Connection Admission Control) — контроль за установлением соединения;

2. UPC (Usage Parameter Control)/NPC (Networks Parameter Control) — контроль за использованием пропускной способности сети;

3. Traffic Shaping — формирование трафика;

4. Priority Control — контроль приоритетов;

5. ABR Flow Control — контроль потока ABR;

6. Frame Discard — отбраковка пакетов;

7. Selective Cell Discard — выборочная отбраковка ячеек.

26. Типы каналов технологии ISDN. Интерфейсы линий ISDN.

Одним из базовых принципов ISDN является предоставление пользователю стандартного интерфейса, с помощью которого пользователь может запрашивать у сети разнообразные услуги. Этот интерфейс образуется между двумя типами оборудования, устанавливаемого в помещении пользователя: терминальным оборудованием пользователя ТЕ и сетевым окончанием NT, которое представляет собой устройство, завершающее канал связи с ближайшим коммутатором ISDN.

Пользовательский интерфейс основан на каналах трех типов:

В - со скоростью передачи данных 64 Кбит/с- со скоростью передачи данных 16 или 64 Кбит/с

Н - со скоростью передачи данных 384 Кбит/с (НО), 1536 Кбит/с (H11) или 1920 Кбит/с (Н12).

Каналы типа В обеспечивают передачу пользовательских данных и с более низкими скоростями, чем 64 Кбит/с. Разделение данных выполняется с помощью техники TDM. Каналы типа В могут соединять пользователей с помощью техники коммутации каналов друг с другом, а также образовывать так называемые полупостоянные соединения, которые эквиваленты соединениям службы выделенных каналов.

Канал типа D выполняет две основные функции. Первой и основной является передача адресной информации, на основе которой осуществляется коммутация каналов типа В в коммутаторах сети. Второй функцией является поддержание услуг низкоскоростной сети с коммутацией пакетов для пользовательских данных. Обычно эта услуга выполняется сетью в то время, когда каналы типа D свободны от выполнения основной функции.

Каналы типа Н предоставляют пользователям возможности высокоскоростной передачи данных. На них могут работать службы высокоскоростной передачи факсов, видеоинформации, качественного воспроизведения звука.

Сеть ISDN поддерживает два типа пользовательского интерфейса - начальный(BRI) и основной (PRI).

Начальный интерфейс BRI предоставляет пользователю два канала по 64 Кбит/с для передачи данных и один канал с пропускной способностью 16 Кбит/с для передачи управляющей информации. Все каналы работают в полнодуплексном режиме. В результате суммарная скорость интерфейса BRI для пользовательских данных, составляет 144 Кбит/с по каждому направлению, а с учетом служебной информации - 192 Кбит/с. Различные каналы пользовательского интерфейса разделяют один и тот же физический двухпроводный кабель по технологии TDM, то есть являются логическими каналами, а не физическими. Данные по интерфейсу BRI передаются кадрами, состоящими из 48 бит. Каждый кадр содержит по 2 байта каждого из В каналов, а также 4 бита канала D. Передача кадра длится 250 мс, что обеспечивает скорость данных 64 Кбит/с для каналов В и 16 Кбит/с для канала D. Кроме бит данных кадр содержит служебные биты для обеспечения синхронизации кадров, а также обеспечения нулевой постоянной составляющей электрического сигнала.

Интерфейс BRI может поддерживать не только схему 2B+D, но и B+D и просто D (когда пользователь направляет в сеть только пакетизированные данные).

Основной интерфейс PRI предназначен для пользователей с повышенными требованиями к пропускной способности сети. Интерфейс PRI поддерживает либо схему 30B+D, либо схему 23B+D. В обеих схемах канал D обеспечивает скорость 64 Кбит/с. Ввиду большой популярности скорости цифровых каналов 2,048 Мбит/с в Европе и скорости 1,544 Мбит/с в остальных регионах, привести стандарт на интерфейс PRI к общему варианту не удалось.

Возможны варианты интерфейса PRI с меньшим количеством каналов типа В, например 20B+D. Каналы типа В могут объединяться в один логический высокоскоростной канал с общей скоростью до 1920 Кбит/с.

Основной интерфейс может быть основан на каналах типа Н. При этом общая пропускная способность интерфейса, все равно не должна превышать 2,048 или 1,544 Мбит/с. Для каналов Н0 возможны интерфейсы 3HO+D для американского варианта и 5H0+D для европейского. Для каналов HI возможен интерфейс, состоящий только из одного канала НИ (1,536 Мбит/с) для американского варианта или одного канала Н12 (1,920 Мбит/с) и одного канала D для европейского варианта.

Интерфейс базового уровня (англ. Basic Rate Interface, BRI) — предоставляет для связи аппаратуры абонента и ISDN-станции два B-канала и один D-канал. Интерфейс базового уровня описывается формулой 2B+D. В стандартном режиме работы BRI могут быть одновременно использованы оба B-канала (например, один для передачи данных, другой для передачи голоса) или один из них. При одновременной работе каналов они могут обеспечивать соединение с разными абонентами. Максимальная скорость передачи данных для BRI интерфейса составляет 128кб/с. D-канал используется только для передачи управляющей информации. В режиме AO/DI (Always On/Dynamic ISDN) полоса 9.6 кбит/c D-канала используется в качестве постоянно включённого выделенного канала X.25, как правило, подключаемого к Интернет. При необходимости, используемая для доступа к Интернет полоса расширяется путём включения одного или двух B-каналов. Этот режим, хотя и стандартизирован (под наименованием X.31), но не нашёл широкого распространения. Для входящих соединений BRI поддерживается до 7 адресов (номеров) которые могут назначаться различными ISDN-устройствами, разделяющим одну абонентскую линию. Дополнительно, обеспечивается режим совместимости с обычными, аналоговыми абонентскими устройствами — абонентское оборудование ISDN, как правило, допускает подключение таких устройств и позволяет им работать прозрачным образом. Интересным побочным эффектом такого «псевдоаналогового» режима работы стала возможность реализации симметричного модемного протокола X2 (англ.) фирмы US Robotics, позволявшего передачу данных поверх линии ISDN в обе стороны на скорости 56кбит/c.

Наиболее распространённый тип сигнализации — DSS1 (англ. Digital Subscriber System No. 1), также известный как Euro-ISDN. Используется два магистральных режима портов BRI относительно станции или телефонов — S/ТЕ и NT. Режим S/ТЕ — порт эмулирует работу ISDN телефона, режим NT — эмулирует работу станции. Отдельное дополнение — использование ISDN телефона с дополнительным питанием в этом режиме, так как стандартно не все порты (и карты HFC) дают питание по ISDN шлейфу (англ. inline power). Каждый из двух режимов может быть «точка-многоточка» (англ. point-to-multi-point, PTMP) он же MSN (англ. Multiple Subscriber Number), или «точка-точка» (англ. point-to-point, PTP).
В первом режиме для поиска адресата назначения на шлейфе используются номера MSN, которые, как правило, совпадают с выделенными провайдером телефонии городскими номерами. Провайдер должен сообщить передаваемые им MSN. Иногда провайдер использует так называемые «технические номера» — промежуточные MSN.
Во втором режиме BRI порты могут объединяться в транк — условную магистраль, по которой передаваемые номера могут использоваться в многоканальном режиме.

ISDN технология использует три основных типа интерфейса BRI: U, S и T.

U — одна витая пара, проложенная от коммутатора до абонента, работающая в полном или полудуплексе. К U-интерфейсу можно подключить только 1 устройство, называемое сетевым окончанием (англ. Network Termination, NT-1 или NT-2).

S/T интерфейс (S0). Используются две витые пары, передача и приём. Может быть обжата как в RJ-45 так и в RJ-11 гнездо/кабель. К гнезду S/T интерфейса можно подключить одним кабелем (шлейфом) по принципу шины до 8 ISDN устройств — телефонов, модемов, факсов, называемых TE1 (Terminal Equipment 1). Каждое устройство слушает запросы в шине и отвечает на привязанный к нему MSN. Принцип работы во многом похож на SCSI.

NT-1, NT-2 — Network Termination, сетевое окончание. Преобразовывает одну пару U в один (NT-1) или два (NT-2) 2-х парных S/T интерфейса (с раздельными парами для приёма и передачи). По сути S и T это одинаковые с виду интерфейсы, разница в том, что по S интерфейсу можно подать питание для TE устройств, телефонов например, а по T — нет. Большинство NT-1 и NT-2 преобразователей умеют и то и другое, поэтому интерфейсы чаще всего называют S/T.

(Primary Rate Interface, PRI) — используется для подключения к широкополосным магистралям, связывающим местные и центральные АТС или сетевые коммутаторы. Интерфейс первичного уровня объединяет:
• для стандарта E1 (распространён в Европе) 30 В-каналов и один D-канал 30B+D. Элементарные каналы PRI могут использоваться как для передачи данных, так и для передачи оцифрованного телефонного сигнала.
• для стандарта Т1 (распространен в Северной Америке и Японии, а также — в технологии DECT) 23 В-канала и один D-канал 23B+D.

Интерфейс первичного уровня (англ. Primary Rate Interface, PRI) — стандартный интерфейс сети ISDN, определяющий дисциплину подключения станций ISDN к широкополосным магистралям, связывающим местные и центральные АТС или сетевые коммутаторы. Интерфейс первичного уровня объединяет 23 В-канала и один D-канал для стандарта Т1 (23B + D=24*64=1536[kBit/s]) или 30 В-каналов для голоса или данных, один D-канал для сигнализации и один Н-канал для служебных данных стандарта E1 (30B + D + Н=32*64=2048[kBit/s]).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.