Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Тема 15. Жесткие диски и типы файловых систем



Накопи́тель на жёстких магни́тных ди́сках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге «винче́стер» — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципемагнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома — магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[1]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации совмещён с накопителем, приводом и блоком электроники и (в персональных компьютерах в большинстве случаев) обычно установлен внутри системного блока компьютера.

Название «Винчестер»

По одной из версий[2][3], название «винчестер» (англ. Winchester) накопитель получил благодаря работавшему в фирме IBM Кеннету Хотону (англ. Kenneth E. Haughton), руководителю проекта, в результате которого в 1973 году был выпущен жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 МБ каждый, что по созвучию совпало с обозначением популярного охотничьего оружия — винтовки «Winchester Model 1894» использующего винтовочный патрон «.30-30 Winchester». Также существует версия[4], что название произошло исключительно из-за названия патрона, также выпускавшегося Winchester Repeating Arms Company, первого созданного в США боеприпаса для гражданского оружия «малого» калибра на бездымном порохе, который превосходил патроны старых поколений по всем показателям и немедленно завоевал широчайшую популярность.

В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слова «винт» (наиболее употребимый вариант).

[править]Характеристики

Интерфейс (англ. interface) — совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Современные серийно выпускаемые внутренние жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, SDIO и Fibre Channel.

Ёмкость (англ. capacity) — количество данных, которые могут храниться накопителем. С момента создания первых жёстких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная ёмкость непрерывно увеличивается. Ёмкость современных жёстких дисков (с форм-фактором 3,5 дюйма) на сентябрь 2011 г. достигает 4000 ГБ (4 Терабайт) и близится к 5 Тб[5]. В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГиБ.[6][7]

Физический размер (форм-фактор) (англ. dimension). Почти все современные (2001—2008 года) накопители для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5дюйма — под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time) — среднее время, за которое винчестер выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Диапазон этого параметра — от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс[8]), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 мс[9]). Для сравнения, у SSD накопителей этот параметр меньше 1 мс.

Скорость вращения шпинделя (англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 5900, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствуетгироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.

Надёжность (англ. reliability) — определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду(англ. IOPS) — у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Сопротивляемость ударам (англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:

§ внутренняя зона диска: от 44,2 до 74,5 Мб/с;

§ внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера — буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.

[править]Уровень шума

Силиконовые шайбы для крепления жестких дисков. Уменьшают вибрацию и шум.

См. также: Бесшумный персональный компьютер, раздел «жёсткие диски»

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Для снижения шума от жестких дисков применяют следующие методы:

§ Программный, c помощью настройки, встроенной в большинство современных дисков, системы AAM. Переключение жёсткого диска в малошумный режим приводит к снижению производительности в среднем на 5-25 %, но делает шум при работе практически неслышным.

§ Использование шумопоглощающих устройств[10], закрепления дисков на резиновых или силиконовых шайбах или даже полная замена крепления на гибкую подвеску.

[править]Производители

Изначально на рынке было большое разнообразие жёстких дисков, производившихся множеством компаний. В связи с ужесточением конкуренции, бурным ростом ёмкости, требующим современных технологий, и понижением норм прибыли большинство производителей было либо куплено конкурентами, либо перешло на другие виды продукции.

Fujitsu продолжает выпускать жёсткие диски для ноутбуков и SCSI-диски, но покинула массовый рынок настольных накопителей в 2001 году из-за фатальной неудачи, связанной с массово выходившей из строя микросхемой контроллера Cirrus Logic на самом диске (в 2009 году производство жёстких дисков было полностью передано компании Toshiba[11]). До этого, жёсткие диски Fujitsu считались лучшими в секторе настольных компьютеров, имея превосходные характеристики вращающихся поверхностей, практически без перенесённых на заводе секторов.Toshiba является основным производителем 2,5- и 1,8-дюймовых ЖД для ноутбуков. Достаточно яркий след в истории жёстких дисков оставила компания Quantum, но и она в начале 2000-ных потерпела неудачи, даже ещё более фатальные, чем IBM и Fujitsu. В отличие от IBM, где окислялись контакты неудачно выполненного разъёма гермобанки, в жёстких дисках Quantum серии CX выходила из строя микросхема коммутатора головок, расположенная в гермобанке диска, что приводило к весьма дорогостоящему извлечению данных с вышедшего из строя диска. Жёсткие диски выпускала и компания Nec. Одним из лидеров в производстве дисков являлась компания Maxtor. В 2001 году Maxtor выкупила подразделение жёстких дисков компании Quantum, и тоже не избежала проблем с репутацией из-за так называемых "тонких" дисков. В 2006 году состоялось слияние Seagate и Maxtor. В середине 1990-х годовсуществовала компания Conner Peripherials, которую впоследствии купила Seagate. В первой половине 1990-х существовала фирма Micropolis, производившая очень дорогие SCSI-диски premium-класса для серверов. Но при выпуске первых в отрасли винчестеров на 7200 об/мин ею были использованы некачественные подшипники шпинделя, поставлявшиеся фирмой Nidec, и Micropolis понесла фатальные убытки на возвратах, разорилась и была полностью выкуплена компанией Seagate. Бывшее подразделение IBM, чьи диски доселе считались практически эталонными, после фатальных неудач, связанных с массовыми отказами дисков для настольных компьютеров в начале 2000-ных, выкупленное фирмой Hitachi, весной 2011г приобрела компания Western Digital.[источник не указан 51 день] В тоже время Samsung продала своё HDD подразделение Seagate.[источник не указан 51 день] На 2011 год осталось всего 3 производителя -Seagate Technology, Western Digital и Toshiba.[источник не указан 51 день]

В настоящее время, в связи с продвижением на рынок внешних накопителей и развитием технологий типа SSD, количество фирм, предлагающих готовые решения вновь возросло.

[править]Устройство

Схема устройства накопителя на жёстких магнитных дисках.

Жёсткий диск состоит из гермозоны и блока электроники.

[править]Гермозона

Разобранный жёсткий диск Samsung HD753LJ ёмкостью 750 ГБ, произведенный в марте 2008 года

Магнит соленоидного малоинерционного двигателя, который перемещает головку жесткого диска.

Разобранный жёсткий диск

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, в некоторых моделях разделённые сепараторами, а также блок головок с устройством позиционирования, и электропривод шпинделя.

Вопреки расхожему мнению, в подавляющем большинстве устройств внутри гермозоны нетвакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления (например, в самолёте) и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.

Блок головок — пакет кронштейнов (рычагов) из упругой стали (обычно по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла (IBM), но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пыльюферромагнетика — окислов железа, марганца и других металлов. Точный состав и технология нанесения составляют коммерческую тайну. Большинство бюджетных устройств содержит одну или две пластины, но существуют модели с бо́льшим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (3600, 4200, 5000, 5400, 5900, 7200, 9600, 10 000, 12 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок,парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трёхфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенных «звездой» с отводом посередине, а ротор — постоянный секционный магнит.

Сепаратор (разделитель) — пластина, изготовленная из пластика или алюминия, находящаяся между блинами и над верхним блином. Используется для выравнивания потоков воздуха внутри гермозоны[12].

[править]Устройство позиционирования

Разобранный жесткий диск. Снята верхняя пластина статора соленоидногодвигателя

Устройство позиционирования (сервопривод, жарг. актуатор) головок представляет из себямалоинерционный[источник не указан 87 дней] соленоидный двигатель.[13] Оно состоит из неподвижной пары сильных неодимовыхпостоянных магнитов, а также катушки (соленоид) на подвижном кронштейне блока головок.

Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет ее точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.[13]

В каждом накопителе существует специальная зона, называемая парковочной, именно на ней останавливаются головки в те моменты, когда накопитель выключен, либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) основном источником шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию. Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путем, меняя параметры режимов ускорения и торможения блока головок. Для этого разработана специальная технология — Automatic Acoustic Management. Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA/ATAPI-6, хотя некоторые производители делали экспериментальные реализации и в более младших версиях этого стандарта. Согласно стандарту, управление осуществляется путем изменения значения управляющей переменной в диапазоне от 128 до 254, что позволяет регулировать шум, производительность, температуру, потребление электроэнергии и срок эксплуатации жёсткого диска.

[править]Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

§

Макрофото магнитной головки

 

§

Запаркованная магнитная головка

 

§

Современные контроллеры позволяют создавать сложные конфигурации дисковых массивов

 

§

Плата контроллера на 3,5" 73-гигабайтномSerial Attached SCSI-диске Fujitsu

 

§

Механическая и электрическая составляющие привода магнитных головок

 

§

Последствие касания магнитной головкой поверхности диска

 

§

Для подключения к материнской плате диска MFM требуется контроллер

 

§

Плата контроллера на старом IDE-диске

[править]Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

Существуют утилиты, способные тестировать физические секторы диска, и ограниченно просматривать и править его служебные данные.[14] Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору по соответствующему семейству моделей.[15]

[править]Геометрия магнитного диска

С целью адресации пространства поверхности пластин диска делятся на дорожки — концентрические кольцевые области. Каждая дорожка делится на равные отрезки — секторы. Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.

Цилиндр — совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора — конкретный сектор на дорожке.

Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нем. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA-1 была введена функция автоопределения геометрии (команда Identify Drive).[16]

[править]Особенности геометрии жёстких дисков со встроенными контроллерами

[править]Зонирование

На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон (англ. Zoned Recording). Все дорожки одной зоны имеют одинаковое количество секторов. Однако, на дорожках внешних зон секторов больше, чем на дорожках внутренних. Это позволяет, используя бо́льшую длину внешних дорожек, добиться более равномерной плотности записи, увеличивая ёмкость пластины при той же технологии производства.

[править]Резервные секторы

Для увеличения срока службы диска на каждой дорожке могут присутствовать дополнительные резервные секторы. Если в каком-либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remapping). Данные, хранившиеся в нём, при этом могут быть потеряны или восстановлены при помощи ECC, а ёмкость диска останется прежней. Существует две таблицы переназначения: одна заполняется на заводе, другая — в процессе эксплуатации. Границы зон, количество секторов на дорожку для каждой зоны и таблицы переназначения секторов хранятся в ПЗУ блока электроники.

[править]Логическая геометрия

По мере роста емкости выпускаемых жёстких дисков их физическая геометрия перестала вписываться в ограничения, накладываемые программными и аппаратными интерфейсами (см.:Барьеры размеров жёстких дисков). Кроме того, дорожки с различным количеством секторов несовместимы со способом адресации CHS. В результате контроллеры дисков стали сообщать не реальную, а фиктивную, логическую геометрию, вписывающуюся в ограничения интерфейсов, но не соответствующую реальности. Так, максимальные номера секторов и головок для большинства моделей берутся 63 и 255 (максимально возможные значения в функциях прерывания BIOS INT 13h), а число цилиндров подбирается соответственно ёмкости диска. Сама же физическая геометрия диска не может быть получена в штатном режиме работы[17] и другим частям системы неизвестна.

[править]Адресация данных

Минимальной адресуемой областью данных на жёстком диске является сектор. Размер сектора традиционно равен 512 байт.[18] В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году[19]. Компания Western Digital уже сообщила[20] о начале использования новой технологии форматирования, названой Advanced Format, и выпустил серию накопителей, использующих новую технологию. К этой серии относятся линейки AARS/EARS и BPVT в отличие от BEVT, которые при тех же характеристиках используют "старый" 512-байтный кластер.

Перед использованием накопителя с технологией Advanced Format для работы в Windows XP необходимо выполнить процедуру выравнивания с помощью специальной утилиты.[21] ДляWindows Vista, Windows 7 и Mac OS выравнивание не требуется.[22]

В Windows Vista, Windows 7, Windows Server 2008 и Windows Server 2008 R2 присутствует ограниченная поддержка дисков с таким размером сектора.[23][24]

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS) и линейная адресация блоков (англ. linear block addressing, LBA).

[править]CHS

При этом способе сектор адресуется по его физическому положению на диске 3 координатами — номером цилиндра, номером головки и номером сектора. В дисках, объёмом больше 528 482 304 байт (504 Мб), со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами» (см. выше).

[править]LBA

При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Стандарты ATA требуют однозначного соответствия между режимами CHS и LBA:

LBA = [ (Cylinder * no of heads + heads) * sectors/track ] + (Sector-1)

Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.

[править]Технологии записи данных

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует наферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряжённости магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

[править]Метод продольной записи

Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей — доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.

[править]Метод перпендикулярной записи

Метод перпендикулярной записи — это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных (на 2009 год) образцов — 400 Гбит на кв/дюйм (62 Гбит/см²).[25]

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

[править]Метод тепловой магнитной записи

Информация в этом разделе устарела. Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.  

Основная статья: Термоассистируемая магнитная запись

Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, плотность записи которых 150 Гбит/см².[26]Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что плотность записи HAMR-носителей достигнет 7,75 Тбит/см².[27] Широкого распространения данной технологии следует ожидать в 2011—2012 годах.

[править]Структурированные носители данных

Основная статья: Структурированный носитель данных

Структурированный (паттернированный) носитель данных (англ. Bit patterned media), — перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.

[править]Сравнение интерфейсов

  Пропускная способность, Мбит/с Максимальная длина кабеля, м Требуется ли кабель питания Количество накопителей на канал Число проводников в кабеле Другие особенности
UltraATA/133 0,46 Да (3,5") / Нет (2,5") 40/80 Controller+2Slave, горячая замена невозможна
SATA-300 Да Host/Slave, возможна горячая замена на некоторых контроллерах
SATA-600 нет данных Да  
FireWire/400 4,5 (при последовательном соединении до 72 м) Да/Нет (зависит от типа интерфейса и накопителя) 4/6 устройства равноправны, горячая замена возможна
FireWire/800 4,5 (при последовательном соединении до 72 м) Нет 4/6 устройства равноправны, горячая замена возможна
USB 2.0 5 (при последовательном соединении, через хабы, до 72 м) Да/Нет (зависит от типа накопителя) Host/Slave, горячая замена возможна
USB 3.0 нет данных Да/Нет (зависит от типа накопителя) нет данных Двунаправленный, совместим с USB 2.0
Ultra-320SCSI Да 50/68 устройства равноправны, горячая замена возможна
SAS Да Свыше 16384   горячая замена; возможно подключениеSATA-устройств в SAS-контроллеры
eSATA Да 1 (с умножителем портов до 15) Host/Slave, горячая замена возможна

RAID (англ. redundant array of independent disksизбыточный массив независимых жёстких дисков) — массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

Аббревиатура RAID изначально расшифровывалась как «redundant array of inexpensive disks» («избыточный (резервный) массив недорогих дисков», так как они были гораздо дешевле RAM). Именно так был представлен RAID его создателями Петтерсоном (David A. Patterson), Гибсоном (Garth A. Gibson) и Катцом (Randy H. Katz) в 1987 году. Со временем RAID стали расшифровывать как «redundant array of independent disks» («избыточный (резервный) массив независимых дисков»), потому что для массивов приходилось использовать и дорогое оборудование (под недорогими дисками подразумевались диски для ПЭВМ).

Калифорнийский университет в Беркли представил следующие уровни спецификации RAID, которые были приняты как стандарт де-факто:

§ RAID 0 представлен как дисковый массив повышенной производительности, без отказоустойчивости.

§ RAID 1 определён как зеркальный дисковый массив.

§ RAID 2 зарезервирован для массивов, которые применяют код Хемминга.

§ RAID 3 и 4 используют массив дисков с чередованием и выделенным диском чётности.

§ RAID 5 используют массив дисков с чередованием и "невыделенным диском чётности".

§ RAID 6 используют массив дисков с чередованием и двумя независимыми "чётностями" блоков.

§ RAID 10 — RAID 0, построенный из RAID 1 массивов

§ RAID 50 — RAID 0, построенный из RAID 5

§ RAID 60 - RAID 0, построенный из RAID 6

RAID 0

Схема RAID 0

RAID 0 (striping — «чередование») — дисковый массив из двух или более жёстких дисков с отсутствием резервирования. Информация разбивается на блоки данных (Ai) и записывается на оба/несколько дисков одновременно.

(+): За счёт этого существенно повышается производительность (от количества дисков зависит кратность увеличения производительности).

(-): Надёжность RAID 0 заведомо ниже надёжности любого из дисков в отдельности и падает с увеличением количества входящих в RAID 0 дисков, т. к. отказ любого из дисков приводит к неработоспособности всего массива.

[править]RAID 1

Два диска — минимальное количество для построения «зеркального» RAID 1

Схема RAID 1

RAID 1 (mirroring — «зеркалирование»).

(+): Обеспечивает приемлемую скорость записи и выигрыш по скорости чтения при распараллеливании запросов.[1]


(+): Имеет высокую надёжность — работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска, см. Вероятность пересечения событий. На практике при выходе из строя одного из дисков следует срочно принимать меры — вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва. Достоинство такого подхода — поддержание постоянной доступности.

(-): Недостаток заключается в том, что приходится выплачивать стоимость двух жёстких дисков, получая полезный объём одного жёсткого диска (классический случай, когда массив состоит из двух дисков).

Зеркало на многих дисках — RAID 1+0 или RAID 0+1. Под RAID 10 (RAID 1+0) имеют в виду вариант, когда два или более RAID 1 объединяются в RAID 0. Вариант, когда два RAID 0 объединяются в RAID 1, называется RAID 0+1. Достоинства и недостатки такие же, как и у уровня RAID 0. Как и в других случаях, рекомендуется включать в массив диски горячего резерва из расчёта один резервный на пять рабочих.

[править]RAID 2

В массивах такого типа диски делятся на две группы — для данных и для кодов коррекции ошибок, причем если данные хранятся на n дисках, то для хранения кодов коррекции необходимо n − 1 дисков. Данные записываются на соответствующие диски так же, как и в RAID 0, они разбиваются на небольшие блоки по числу дисков, предназначенных для хранения информации. Оставшиеся диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо жёсткого диска из строя возможно восстановление информации. Метод Хеммингадавно применяется в памяти типа ECC и позволяет на лету исправлять однократные и обнаруживать двукратные ошибки.

Недостаток массива RAID 2 в том, что для его функционирования нужна структура из почти двойного количества дисков, поэтому такой вид массива не получил распространения.


[править]RAID 3

Схема RAID 3

В массиве RAID 3 из n дисков данные разбиваются на блоки размером 1 байт и распределяются по n − 1 дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся n − 1 диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.

Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность.

Достоинства:

§ высокая скорость чтения и записи данных;

§ минимальное количество дисков для создания массива равно трём.

Недостатки:

§ массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения.

§ большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.


[править]RAID 4

Схема RAID 4

RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объёма. Запись же производится медленно из-за того, что чётность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL.

[править]RAID 5

Схема RAID 5

Основным недостатком уровней RAID от 2-го до 4-го является невозможность производить параллельные операции записи, так как для хранения информации о чётности используется отдельный контрольный диск. RAID 5 не имеет этого недостатка. Блоки данных и контрольные суммы циклически записываются на все диски массива, нет асимметричности конфигурации дисков. Под контрольными суммами подразумевается результат операции XOR(исключающее или). Xor обладает особенностью, которая применяется в RAID 5, которая даёт возможность заменить любой операнд результатом, и применив алгоритм xor, получить в результате недостающий операнд. Например: a xor b = c (где a, b, c — три диска рейд-массива), в случае если a откажет, мы можем получить его, поставив на его место c и проведя xor между c и b: c xor b = a. Это применимо вне зависимости от количества операндов: a xor b xor c xor d = e. Если отказывает c тогда e встаёт на его место и проведя xor в результате получаем c: a xor b xor e xor d = c. Этот метод по сути обеспечивает отказоустойчивость 5 версии. Для хранения результата xor требуется всего 1 диск, размер которого равен размеру любого другого диска в raid.

(+): RAID5 получил широкое распространение, в первую очередь, благодаря своей экономичности. Объём дискового массива RAID5 рассчитывается по формуле (n-1)*hddsize, где n — число дисков в массиве, а hddsize — размер наименьшего диска. Например, для массива из 4-х дисков по 80 гигабайт общий объём будет (4 — 1) * 80 = 240 гигабайт. На запись информации на том RAID 5 тратятся дополнительные ресурсы и падает производительность, так как требуются дополнительные вычисления и операции записи, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких дисков массива могут обрабатываться параллельно.

(-): Производительность RAID 5 заметно ниже, в особенности на операциях типа Random Write (записи в произвольном порядке), при которых производительность падает на 10-25% от производительности RAID 1 (или RAID 10), так как требует большего количества операций с дисками (каждая операция записи сервера заменяется на контроллере RAID на три - одну операцию чтения и две операции записи). Недостатки RAID 5 проявляются при выходе из строя одного из дисков — весь том переходит в критический режим (degrade), все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность. При этом уровень надежности снижается до надежности RAID-0 с соответствующим количеством дисков (то есть в n раз ниже надежности одиночного диска). Если до полного восстановления массива произойдет выход из строя, или возникнет невосстановимая ошибка чтения хотя бы на еще одном диске, то массив разрушается, и данные на нем восстановлению обычными методами не подлежат. Следует также принять во внимание, что процесс RAID Reconstruction (восстановления данных RAID за счет избыточности) после выхода из строя диска вызывает интенсивную нагрузку чтения с дисков на протяжении многих часов непрерывно, что может спровоцировать выход какого-либо из оставшихся дисков из строя в этот наименее защищенный период работы RAID, а также выявить ранее необнаруженные сбои чтения в массивах cold data (данных, к которым не обращаются при обычной работе массива, архивные и малоактивные данные), что повышает риск сбоя при восстановлении данных. Минимальное количество используемых дисков равно трём.

[править]RAID 5EE

Примечание: поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, емкость логического тома ограничивается емкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их емкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.

Достоинства:

§ 100% защита данных

§ Большая емкость физических дисков по сравнению с RAID-1 или RAID -1E

§ Большая производительность по сравнению с RAID-5

§ Более быстрое восстановление RAID по сравнению с RAID-5Е

Недостатки:

§ Более низкая производительность, чем в RAID-1 или RAID-1E

§ Поддержка только одного логического тома на массив

§ Невозможность совместного использования резервного диска с другими массивами

§ Поддержка не всех контроллеров

[править]RAID 6

Схема RAID 6

RAID 6 — похож на RAID 5, но имеет более высокую степень надёжности — под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков — защита от кратного отказа. Для организации массива требуется минимум 4 диска[2]. Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также прочитывать и перезаписывать больше дисковых блоков при записи каждого блока).

[править]RAID 7

RAID 7 - зарегистрированная торговая марка компании Storage Computer Corporation, отдельным уровнем RAID не является. Структура массива такова: на n − 1 дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП; в случае перебоев с питанием происходит повреждение данных.

[править]RAID 10

Схема архитектуры RAID 10

RAID 10 — зеркалированный массив, данные в котором записываются последовательно на несколько дисков, как в RAID 0. Эта архитектура представляет собой массив типа RAID 0, сегментами которого вместо отдельных дисков являются массивы RAID 1. Соответственно, массив этого уровня должен содержать как минимум 4 диска. RAID 10 объединяет в себе высокую отказоустойчивость и производительность.

Нынешние контроллеры используют этот режим по умолчанию для RAID 1+0. То есть, один диск основной, второй — зеркало, считывание данных производится с них поочередно. Сейчас можно считать, что RAID 10 и RAID 1+0 — это просто разное название одного и того же метода зеркалирования дисков. Утверждение, что RAID 10 является самым надёжным вариантом для хранения данных, ошибочно, т.к., несмотря на то, что для данного уровня RAID возможно сохранение целостности данных при выходе из строя половины дисков, необратимое разрушение массива происходит при выходе из строя уже двух дисков, если они находятся в одной зеркальной паре.

[править]Комбинированные уровни

Помимо базовых уровней RAID 0 - RAID 5, описанных в стандарте, существуют комбинированные уровни RAID 1+0, RAID 3+0, RAID 5+0, RAID 1+5, которые различные производители интерпретируют каждый по-своему.

§ RAID 1+0 — это сочетание зеркалирования и чередования (см. выше).

§ RAID 5+0 — это чередование томов 5-го уровня.

§ RAID 1+5 — RAID 5 из зеркалированных пар.

Комбинированные уровни наследуют как преимущества, так и недостатки своих «родителей»: появление чередования в уровне RAID 5+0 нисколько не добавляет ему надёжности, но зато положительно отражается на производительности. Уровень RAID 1+5, наверное, очень надёжный, но не самый быстрый и, к тому же, крайне неэкономичный: полезная ёмкость тома меньше половины суммарной ёмкости дисков…

Стоит отметить, что количество жёстких дисков в комбинированных массивах также изменится. Например для RAID 5+0 используют 6 или 8 жёстких дисков, для RAID 1+0 — 4, 6 или 8.

[править]Сравнение стандартных уровней

Уровень Количество дисков Эффективная ёмкость* Отказоустойчивость Преимущества Недостатки
любое S * N нет наивысшая производительность очень низкая надёжность
от 2, чётное S * N / 2 1 диск** высокая производительность и надёжность двойная стоимость дискового пространства
1E от 3 S * N / 2 1 диск** высокая защищённость данных и неплохая производительность двойная стоимость дискового пространства
10 или 01 от 4, чётное S * N / 2 1 диск** наивысшая производительность и высокая надёжность двойная стоимость дискового пространства
от 3 до 16 S * (N - 1) 1 диск экономичность, высокая надёжность производительность ниже RAID 0 и 1
от 6, чётное S * (N - 2) 1 диск** высокая надёжность и производительность высокая стоимость и сложность обслуживания
5E от 4 S * (N - 2) 1 диск экономичность, высокая надёжность, скорость выше RAID 5 производительность ниже RAID 0 и 1, резервный накопитель работает на холостом ходу и не проверяется
5EE от 4 S * (N - 2) 1 диск быстрое реконструирование данных после сбоя, экономичность, высокая надёжность, скорость выше RAID 5 производительность ниже RAID 0 и 1, резервный накопитель работает на холостом ходу и не проверяется
от 4 S * (N - 2) 2 диска экономичность, наивысшая надёжность производительность ниже RAID 5
от 8, чётное S * (N - 2) / 2 2 диска** очень высокая надёжность высокая стоимость и сложность организации

* N — количество дисков в массиве, S — объём наименьшего диска.[3][4][5][6][7] ** Информация не потеряется, если выйдут из строя все диски в пределах одного зеркала.

[править]Matrix RAID

Схема Intel Matrix RAID

Matrix RAID — это технология, реализованная фирмой Intel в своих чипсетах начиная с ICH6R. Строго говоря, эта технология не является новым уровнем RAID (ее аналог существует в аппаратных RAID-контроллерах высокого уровня), она позволяет, используя небольшое количество дисков организовать одновременно один или несколько массивов уровня RAID 1, RAID 0 и RAID 5. Это позволяет за сравнительно небольшие деньги обеспечить для одних данных повышенную надёжность, а для других высокую скорость доступа и производства.

[править]Программный (англ. software) RAID

Для реализации RAID можно применять не только аппаратные средства, но и полностью программные компоненты (драйверы). Например, в системах на ядре Linux существуют специальные модули ядра, а управлять RAID-устройствами можно с помощью утилиты mdadm. Программный RAID имеет свои достоинства и недостатки. С одной стороны, он ничего не стоит (в отличие от аппаратных RAID-контроллеров, цена которых от $250). С другой стороны, программный RAID использует ресурсы центрального процессора, и в моменты пиковой нагрузки на дисковую систему процессор может значительную часть мощности тратить на обслуживание RAID-устройств.

Ядро GNU/Linux 2.6.28 (последнее из вышедших в 2008 году) поддерживает программные RAID следующих уровней: 0, 1, 4, 5, 6, 10. Реализация позволяет создавать RAID на отдельных разделах дисков, что аналогично описанному выше Matrix RAID. Поддерживается загрузка с RAID.

ОС семейства Windows NT, такие как Windows NT 3.1/3.5/3.51/NT4/2000/XP/2003 изначально, с момента проектирования данного семейства, поддерживает программный RAID 0, RAID 1 и RAID 5 (см. Dynamic Disk). Более точно, Windows XP Pro поддерживает RAID 0. Поддержка RAID 1 и RAID 5 заблокирована разработчиками, но, тем не менее, может быть включена, путем редактирования системных бинарных файлов ОС.[1]Windows Server 2003 — 0, 1 и 5. Windows XP Home RAID не поддерживает.

В ОС FreeBSD есть несколько реализаций программного RAID. Так, atacontrol, может как полностью строить программный RAID, так и может поддерживать полуаппаратный RAID на таких чипах как ICH5R. Во FreeBSD, начиная с версии 5.0, дисковая подсистема управляется встроенным в ядро механизмом GEOM. GEOM предоставляет модульную дисковую структуру, благодаря которой родились такие модули как gstripe (RAID 0), gmirror (RAID 1), graid3 (RAID 3), gconcat (объединение нескольких дисков в единый дисковый раздел). Так же существуют устаревшие классы ccd (RAID 0, RAID 1) и gvinum (менеджер логических томов vinum). Начиная с FreeBSD 7.2 поддерживается файловая система ZFS в которой можно собирать следующие уровни RAID: 0, 1, 5, 6, а также комбинируемые уровни.

OpenSolaris и Solaris 10 используют Solaris Volume Manager, который поддерживает RAID-0, RAID-1, RAID-5 и любые их комбинации как 1+0. Поддержка RAID-6 осуществляется в файловой системе ZFS.

[править]Дальнейшее развитие идеи RAID

Синий разъём PCI-X на материнской плате сервера FSC Primergy TX200 S2 специально предназначен для платы ноль-канального RAID (zero-channel RAID, ZCR). Установлен MegaRAID 320-0 Zero Channel RAID Controler фирмы LSI)[8]

Идея RAID-массивов — в объединении дисков, каждый из которых рассматривается как набор секторов, и в результате драйвер файловой системы «видит» как бы единый диск и работает с ним, не обращая внимания на его внутреннюю структуру. Однако, можно добиться существенного повышения производительности и надёжности дисковой системы, если драйвер файловой системы будет «знать» о том, что работает не с одним диском, а с набором дисков.

Рассмотрим случай, когда требуется увеличение скорости и размера диска без требования увеличения надёжности — случай, когда используется RAID-0. Если драйвер файловой системы будет знать, что имеет дело с несколькими дисками, он постарается размещать небольшие файлы так, чтобы каждый файл оказался целиком на одном диске — это эквивалентно снижению фрагментированности файловой системы и позволяет существенно ускорить работу.

Более того: при разрушении любого из дисков в составе RAID-0 вся информация в массиве окажется потерянной. Но если драйвер файловой системы разместил каждый файл на одном диске, и при этом правильно организована структура директорий, то при разрушении любого из дисков будут потеряны только файлы, находившиеся на этом диске; а файлы, целиком находящиеся на сохранившихся дисках, останутся доступными.

Катало́г (англ. directory — справочник, указатель) — объект в файловой системе, упрощающий организацию файлов. Типичная файловая система содержит большое количество файлов, и каталоги помогают упорядочить её путём их группировки.

В информатике используется следующее определение: каталог — поименованная совокупность байтов на носителе информации, содержащая название подкаталогов и файлов.[источник не указан 577 дней]

Понятие каталог всё чаще используется не как дублирующий синоним Директории или Папки, а для обозначения отдельно созданной иерархической структуры, построенной по принципу «Избранное». (то есть в русском значении слова Каталог — опись)

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.