Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ЗАТУХАНИЕ И ВОЛНОВОЕ СОПРОТИВЛЕНИЕ



Степень искажения синусоидальных сигналов линиями связи оценивается с помощью таких характеристик, как затухание и полоса пропускания.

Затухание показывает, насколько уменьшается мощность эталонного синусоидального сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии. Затухание А обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле:

А = 10 lg Рвыхвх,

где Pвых — мощность сигнала на выходе линии, а Рвх — мощность сигнала на ее входе.

При отсутствии промежуточных усилителей мощность выходного сигнала кабеля всегда меньше мощности входного, поэтому затухание кабеля, как правило, имеет отрицательную величину.

Степень затухания мощности синусоидального сигнала при прохождении им по линии связи обычно зависит от частоты синусоиды, поэтому полную характеристику дает лишь зависимость затухания от частоты во всем диапазоне, используемом на практике (Рисунок 3).

Рисунок 3. Зависимость затухания от частоты.

Затухание представляет собой обобщенную характеристику линии связи, так как позволяет судить не о точной форме сигнала, а о его мощности (интегральной результирующей от формы сигнала). На практике затухание является важным атрибутом описания линий связи: в частности, в стандартах на кабель этот параметр считается одним из основных.

Чаще всего при описании параметров линии связи приводятся значения затухания всего в нескольких точках общей зависимости, при этом каждая из них соответствует определенной частоте, на которой измеряется затухание. Отдельное значение затухания называют коэффициентом затухания. Применение всего нескольких значений вместо полной характеристики связано, с одной стороны, со стремлением упростить измерения при проверке качества линии, а с другой, основная частота передаваемого сигнала часто заранее известна — это та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать уровень затухания на данной частоте, чтобы приблизительно оценить искажения передаваемых по линии сигналов. Более точные оценки возможны при знании затухания на различных частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Чем меньше затухание, тем выше качество линии связи или кабеля, по которому она проложена. Обычно затухание определяют для пассивных участков линии связи, состоящих из кабелей и кроссовых секций, без усилителей и регенераторов. Например, кабель с витыми парами Категории 5 для внутренней проводки в зданиях, применяемой практически для всех технологий локальных сетей, характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м.

Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, чьи сигналы имеют значимые гармоники с частотой примерно 100 МГц. Более качественный кабель Категории 6 уже имеет на частоте 100 МГц затухание не ниже -20,6 дБ, т. е. мощность сигнала снижается в меньшей степени. Часто в документации приводятся абсолютные значения затухания, т. е. его знак опускается, так как затухание всегда отрицательно для пассивного, не содержащего усилители и регенераторы, участка линии, например непрерывного кабеля.

Рисунок 4. Окна прозрачности оптического волокна.

Оптический кабель отличается существенно более низкими (по абсолютной величине) размерами затухания, обычно в диапазоне от 0,2 до 3 дБ при длине кабеля в 1000 м. Практически всем оптическим волокнам свойственна сложная зависимость затухания от длины волны, с тремя так называемыми «окнами прозрачности». Характерный пример показан на Рисунке 4. Как можно видеть, область эффективного использования современных волокон ограничена волнами длин 850, 1300 и 1550 нм, при этом окно в 1550 нм обеспечивает наименьшие потери, а значит, максимальную дальность при фиксированной мощности передатчика и фиксированной чувствительности приемника. Выпускаемый многомодовый кабель обладает двумя первыми окнами прозрачности, т. е. 850 и 1300 нм, а одномодовый кабель — двумя окнами прозрачности в диапазонах 1310 и 1550 нм.

Мощность передатчика часто характеризуется абсолютным уровнем мощности сигнала. Уровень мощности, как и затухание, измеряется в децибелах. При этом в качестве базового принимается значение в 1 мВт. Таким образом, уровень мощности p вычисляется по следующей формуле:

p = 10 lg P/1 мВт [дБм],

где P — мощность сигнала в милливаттах, а дБм — единица измерения уровня мощности (дБ на 1 мВт).

Важным вторичным параметром распространения медной линии связи является ее волновое сопротивление. Этот параметр представляет собой полное (комплексное) сопротивление, которое электромагнитная волна определенной частоты встречает при распространении вдоль однородной цепи. Волновое сопротивление измеряется в Омах и зависит от таких первичных параметров линии связи, как активное сопротивление, погонная индуктивность и погонная емкость, а также от частоты самого сигнала. Выходное сопротивление передатчика должно быть согласовано с волновым сопротивлением линии, иначе затухание сигнала будет чрезмерно большим.

ПОМЕХОУСТОЙЧИВОСТЬ

Помехоустойчивость линии определяет ее способность уменьшать уровень помех со стороны внешней среды или проводников самого кабеля. Она зависит от типа используемой физической среды, от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной — волоконно-оптические, малочувствительные к внешнему электромагнитному излучению. Обычно уменьшения помех от внешних электромагнитных полей добиваются экранированием и/или скручиванием проводников. Величины, характеризующие помехоустойчивость, относятся к параметрам влияния линии связи.

Первичные параметры влияния медного кабеля — электрическая и магнитная связи. Электрическая связь определяется отношением наведенного тока в цепи, подверженной влиянию, к напряжению, действующему во влияющей цепи. Магнитная связь — это отношение электродвижущей силы, наведенной в цепи, подверженной влиянию, к току во влияющей цепи. Результатом электрической и магнитной связи будут наведенные сигналы (наводки) в цепи, подверженной влиянию. Устойчивость кабеля к наводкам характеризуется несколькими различными параметрами.

Переходное затухание на ближнем конце (Near End Cross Talk, NEXT) определяет устойчивость кабеля в том случае, когда наводка образуется в результате действия сигнала, генерируемого передатчиком, подключенным к одной из соседних пар на том же конце кабеля, на котором работает подключенный к подверженной влиянию паре приемник. Показатель NEXT, выраженный в децибелах, равен 10 lg Pвых/Pнав, где Pвых — мощность выходного сигнала, Pнав — мощность наведенного сигнала. Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары Категории 5 показатель NEXT должен быть лучше -27 дБ на частоте 100 МГц.

Переходное затухание на дальнем конце (Far End Cross Talk, FEXT) описывает устойчивость кабеля к наводкам для случая, когда передатчик и приемник подключены к разным концам кабеля. Очевидно, что этот показатель должен быть лучше, чем NEXT, так как до дальнего конца кабеля сигнал приходит ослабленный вследствие затухания в каждой паре.

Показатели NEXT и FEXT обычно используются применительно к кабелю, состоящему из нескольких витых пар, когда взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (т. е. состоящего из одной экранированной жилы) подобный показатель не имеет смысла, не применяется он и для двойного коаксиального кабеля вследствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколько-нибудь заметных помех друг для друга.

В связи с тем, что в некоторых новых технологиях передача данных осуществляется одновременно по нескольким витым парам, в последнее время стали применяться суммарные показатели (PowerSUM, PS) — PS NEXT и PS FEXT. Они отражают устойчивость кабеля к суммарной мощности перекрестных наводок на одну из пар кабеля от всех остальных передающих пар.

Весьма важной характеристикой передающей среды является показатель защищенности кабеля (ACR), представляющий собой разность между уровнями полезного сигнала и помех. Чем больше это значение, тем с потенциально более высокой скоростью можно передавать данные по указанному кабелю.

ДОСТОВЕРНОСТЬ

Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило, 10-4—10-6, а в волоконно-оптических линиях связи — 10-9. Значение достоверности передачи данных, например в 10-4, говорит о том, что в среднем из 10000 бит неправильно интерпретируется значение одного бита.

Битовые ошибки происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала вследствие ограниченной полосы пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать линии связи с более широкой полосой рабочих частот.

ПОЛОСА ПРОПУСКАНИЯ

Полоса пропускания — еще одна вторичная характеристика. С одной стороны, она непосредственно зависит от затухания, а с другой — прямо влияет на такой важнейший показатель линии связи, как максимально возможная скорость передачи информации.

Полоса пропускания (bandwidth) — это непрерывный диапазон частот, для которого затухание не превышает заранее заданный определенный предел. Иными словами, полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений (часто за граничные принимаются частоты, где мощность выходного сигнала уменьшается в два раза по отношению к входному, что соответствует затуханию в -3 дБ). Как мы увидим ниже, ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи.

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.