Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Линейные компоненты вычислительных систем. Операционные усилители (ОУ) – основа построения линейных и нелинейных вычислительных звеньев



За последнее время для исследования систем автоматического управления и, в частности, для построения переходных процессов стали широко применяться вычислительные машины непрерывного действия и цифровые вычислительные машины. Удобство первых заключается в том, что физическому процессу, протекающему в исследуемой системе, соответствует протекание в вычислительной машине (модели) некоторого другого аналогового процесса, описываемого теми же диффереициальными уравнениями, что и исходный процесс. Это позволяет изучать процессы в системах управления наиболее наглядно, так как каждый обобщенной координате в исследуемой системе соответствует некоторая переменная в вычислительной машине, например электрическое напряжение.

Моделирующие или аналоговые вычислительные машины позволяют моделировать как всю систему в целом, так и отдельные ее части. Так, например, часто вычислительная машина используется для моделирования объекта, например самолета, корабля, паровой турбины, двигателя внутреннего сгорания и т. п., а само управляющее устройство может быть реальным. При сопряжении реального управляющего устройства с объектом, в качестве которого выступает модель, получается замкнутая система, которая может быть исследована еще до того, как будет построен сам объект.

Вычислительные машины целесообразно использовать для исследования обыкновенных линейных систем в тех случаях, когда последние описываются дифференциальными уравнениями сравнительно высокого порядка и их аналитическое исследование становится малоэффективным. Однако наибольшее значение имеют вычислительные машины при исследовании линейных систем с переменными параметрами и нелинейных систем, поскольку для этих случаев пока еще мало разработано приемлемых для практики методов, а иногда аналитические методы вообще отсутствуют.

Операционный усилитель— усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Линейные и нелинейные вычислительные звенья строятся по дифференциальному уравнению, которым описывается исследуемая система. Линейные вычислительные звенья относятся к моделированию линейных-дифференциальных уравнений с постоянными коэффициентами. При необходимости исследовать процессы в системах с переменными коэффициентами или в системах с временным запаздыванием к линейной электронной модели добавляются соответственно блоки переменных коэффициентов и блоки временного запаздывания. Добавление нелинейных блоков позволяет исследовать процессы в нелинейных системах. Все эти добавочные блоки существенно повышают эффективность электронных моделей, так как позволяют сравнительно просто и достаточно точно исследовать процессы в сложных системах, что является в большинстве случаев недоступным для аналитических методов расчета.

8) Преобразователи формы информации.

9) Функциональная и структурная организация процессора.

10) Архитектура базового микропроцессора.

11) Система команд базового микропроцессора. Способы адресации.

12) Роль и место интерфейсов в компьютерных системах. Примеры архитектур персональных ЭВМ.

13) Основные стадии выполнения команды.

14) Программно-структурные модели команд микропроцессора.

15) Эволюция архитектур микропроцессоров семейства Х86.

16) Особенности многоядерных архитектур микропроцессоров.

17) Организация ввода-вывода.

18) Программируемые параллельные адаптеры и организация параллельного обмена данными.

19) Программируемые связные адаптеры и организация последовательного обмена данными.

20) Примеры физической реализации линий последовательной передачи данных.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.