Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Функциональная схема компьютера. Основные устройства компьютера и их функции



Билет № 1

Вопрос 1

А.П.Шестаков

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих основных устройств: процессор, память (внутренняя и внешняя) и устройства ввода и вывода информации. Рассмотрим более подробно назначение каждого из них.

Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство АЛУ и устройство управления УУ.

Каждый процессор способен выполнять вполне определенный набор универсальных инструкций, называемых чаще всего машинными командами. Каков именно этот набор, определяется устройством конкретного процессора, но он не очень велик и в основном аналогичен для различных процессоров. Работа ЭВМ состоит в выполнении последовательности таких команд, подготовленных в виде программы. Процессор способен организовать считывание очередной команды, ее анализ и выполнение, а также при необходимости принять данные или отправить результаты их обработки на требуемое устройство. Выбрать, какую инструкцию программы исполнять следующей, также должен сам процессор, причем результат этого выбора часто может зависеть от обрабатываемой в данный момент информации.

Хотя внутри процессора всегда имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации, в нем сознательно не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство – память. Мы рассмотрим лишь наиболее важные виды компьютерной памяти, поскольку ее ассортимент непрерывно расширяется и пополняется все новыми и новыми типами.

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю. Исторически это действительно было связано с размещением внутри или вне процессорного шкафа. Однако с уменьшением размеров машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее, терминология сохранилась.

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. Сейчас такая память изготавливается на базе самых современных полупроводниковых технологий (раньше использовались магнитные устройства на основе ферритовых сердечников – лишнее свидетельство тому, что конкретная физические принципы значения не имеют). Наиболее существенная часть внутренней памяти называется ОЗУ - оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Наверное, каждому пользователю известно, что при выключении питания содержимое ОЗУ полностью теряется. В состав внутренней памяти современного компьютера помимо ОЗУ также входят и некоторые другие разновидности памяти, которые при первом знакомстве можно пропустить. Здесь упомянем только о постоянном запоминающем устройстве (ПЗУ), в котором в частности хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера (для лучшего понимания можно указать на некоторую аналогию между информацией в ПЗУ и “врожденными” безусловными рефлексами у живых существ). Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости обновлять его даже не извлекая из компьютерной платы.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние несколько жаргонно пользователи часто именуют винчестерами), а также оптические дисководы (устройства для работы с CD ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее, внешняя память позволяет сохранить огромные объемы информации с целью последующего использования. Подчеркнем, что информация во внешней памяти прежде всего предназначена для самого компьютера и поэтому хранится в удобной ему форме; человек без использования машины не в состоянии, например, даже отдаленно представить содержимое немаркированной дискеты или диска CD ROM.

Современные программные системы способны объединять внутреннюю и внешнюю память в единое целое, причем так, чтобы наиболее редко используемая информация попадала в более медленно работающую внешнюю память. Такой метод дает возможность очень существенно расширить объем обрабатываемой с помощью компьютера информации.

Если процессор дополнить памятью, то такая система уже может быть работоспособной. Ее существенным недостатком является невозможность узнать что-либо о происходящем внутри такой системы. Для получения информации о результатах, необходимо дополнить компьютер устройствами вывода, которые позволяют представить их в доступной человеческому восприятию форме. Наиболее распространенным устройством вывода является дисплей, способный быстро и оперативно отображать на своем экране как текстовую, так и графическую информацию. Для того чтобы получить копию результатов на бумаге, используют печатающее устройство, или принтер.

Наконец, поскольку пользователю часто требуется вводить в компьютерную систему новую информацию, необходимы еще и устройства ввода. Простейшим устройством ввода является клавиатура. Широкое распространение программ с графическим интерфейсом способствовало популярности другого устройства ввода – манипулятора мышь. Наконец, очень эффективным современным устройством для автоматического ввода информации в компьютер является сканнер, позволяющий не просто преобразовать картинку с листа бумаги в графический компьютерный файл, но и с помощью специального программного обеспечения распознать в прочитанном изображении текст и сохранить его в виде, пригодном для редактирования в обычном текстовом редакторе.

Теперь, когда мы знаем основные устройства компьютера и их функции, осталось выяснить, как они взаимодействуют между собой. Для этого обратимся к функциональной схеме современного компьютера, приведенной на рисунке.

Для связи основных устройств компьютера между собой используется специальная информационная магистраль, обычно называемая инженерами шиной. Шина состоит из трех частей:

шина адреса, на которой устанавливается адрес требуемой ячейки памяти или устройства, с которым будет происходить обмен информацией;

шина данных, по которой собственно и будет передана необходимая информация; и, наконец,

шина управления, регулирующей этот процесс (например, один из сигналов на этой шине позволяет компьютеру различать между собой адреса памяти и устройств ввода/вывода).

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти. Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последнее, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее, но нас сейчас не интересуют технические детали. Особо отметим, что обмен по шине при определенных условиях и при наличии определенного вспомогательного оборудования может происходить и без непосредственного участия процессора, например, между устройством ввода и внутренней памятью.

Подчеркнем также, что описанная нами функциональная схема на практике может быть значительно сложнее. Современный компьютер может содержать несколько согласованно работающих процессоров, прямые информационные каналы между отдельными устройствами, несколько взаимодействующих магистралей и т.д. Тем не менее, если понимать наиболее общую схему, то разобраться в конкретной компьютерной системе будет уже легче.

Магистральная структура позволяет легко подсоединять к компьютеру именно те внешние устройства, которые нужны для данного пользователя. Благодаря ей удается скомпоновать из стандартных блоков любую индивидуальную конфигурацию компьютера.

Вопрос 2

Ответ в тетради

Билет 2
Вопрос 1

Процессор. Процессор может обрабатывать различные виды информации: числовую, текстовую, графическую, видео и звуковую. Процессор является электронным устройством, поэтому различные виды информации должны в нем обрабатываться в форме последовательностей электрических импульсов.

Такие последовательности электрических импульсов можно записать в виде последовательностей нулей и единиц (есть импульс — единица, нет импульса — нуль), которые называются машинным языком.

Устройства ввода и вывода информации. Человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в форме последовательностей нулей и единиц, следовательно, в составе компьютера требуются специальные устройства ввода и вывода информации.

Устройства ввода «переводят» информацию с языка человека на машинный язык компьютера, а устройства вывода, наоборот, делают информацию, представленную на машинном языке, доступной для человеческого восприятия.

Устройства ввода информации. Ввод числовой и текстовой информации осуществляется с помощью клавиатуры. Для ввода графической информации или работы с графическим интерфейсом программ чаще всего применяют манипуляторы типа мышь (для настольных персональных компьютеров) и трекбол или тачпад (для портативных компьютеров).

Если мы хотим ввести в компьютер фотографию или рисунок, то используем специальное устройство — сканер. В настоящее время все большее распространение получают цифровые камеры (фотоаппараты и видеокамеры), которые формируют изображения уже в компьютерном формате. Для ввода звуковой информации предназначен микрофон, подключенный ко входу специальной звуковой платы, установленной в компьютере.

Управлять компьютерными играми удобнее посредством специальных устройств — игровых манипуляторов (джойстиков).

Устройства вывода информации. Наиболее универсальным устройством вывода является монитор, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.

Для сохранения информации в виде «твердой копии» на бумаге служит принтер, а для вывода на бумагу сложных чертежей, рисунков и схем большого формата — плоттер (графопостроитель).

Вывод звуковой информации осуществляется с помощью акустических колонок или наушников, подключенных к выходу звуковой платы.



Оперативная и долговременная память. В компьютере информация хранится в оперативной (внутренней) памяти. Однако при выключении компьютера вся информация из оперативной памяти стирается.

Долговременное хранение информации обеспечивается внешней памятью. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках (НГМД), накопители на жестких магнитных дисках (НЖМД) и оптические накопители (CD-ROM и DVD-ROM).

Магистраль. Обмен информацией между отдельными устройствами компьютера производится по магистрали (рис. 8).

Подключение компьютера к сети. Человек постоянно обменивается информацией с окружающими его людьми. Компьютер может обмениваться информацией с другими компьютерами с помощью локальных и глобальных компьютерных сетей. Для этого в его состав включают сетевую плату и модем.

Вопрос 2

В тетради

Билет 3

Вопрос 1

Внешняя (долговременная) память — это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — носителя.

Основные виды накопителей:

  • накопители на гибких магнитных дисках (НГМД);
  • накопители на жестких магнитных дисках (НЖМД);
  • накопители на магнитной ленте (НМЛ);
  • накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

  • гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;
  • жёсткие магнитные диски (Hard Disk);
  • кассеты для стримеров и других НМЛ;
  • диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.

Основные характеристики накопителей и носителей:

  • информационная ёмкость;
  • скорость обмена информацией;
  • надёжность хранения информации;
  • стоимость.

Остановимся подробнее на рассмотрении вышеперечисленных накопителей и носителей.

Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственноустройств чтения/записи информации и магнитного носителя, на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую.

Для операционной системы данные на дисках организованы в дорожки и секторы. Дорожки (40 или 80) представляют собой узкие концентрические кольца на диске. Каждая дорожка разделена на части, называемые секторами. При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объёма запрашиваемой информации. Размер сектора на дискете равен 512 байт. Цилиндр — это общее количество дорожек, с которых можно считать информацию, не перемещая головок. Поскольку гибкий диск имеет только две стороны, а дисковод для гибких дисков — только две головки, в гибком диске на один цилиндр приходится две дорожки. В жестком диске может быть много дисковых пластин, каждая из которых имеет две (или больше) головки, поэтому одному цилиндру соответствует множество дорожек. Кластер (или ячейка размещения данных) — наименьшая область диска, которую операционная система использует при записи файла. Обычно кластер — один или несколько секторов.

Перед использованием дискета должна быть форматирована, т.е. должна быть создана её логическая и физическая структура.

Дискеты требуют аккуратного обращения. Они могут быть повреждены, если

  • дотрагиваться до записывающей поверхности;
  • писать на этикетке дискеты карандашом или шариковой ручкой;
  • сгибать дискету;
  • перегревать дискету (оставлять на солнце или около батареи отопления);
  • подвергать дискету воздействию магнитных полей.

Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства — камеры, внутри которой находится один или более дисковых носителей, помещённых на один ось, и блок головок чтения/записи с их общим приводящим механизмом. Обычно, рядом с камерой носителей и головок располагаются схемы управления головками, дисками и, часто, интерфейсная часть и (или) контроллер. На интерфейсной карте устройства располагается собственно интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

Принцип функционирования жёстких дисков аналогичен этому принципу для ГМД.

 

Основные физические и логические параметры ЖД.

  • Диаметр дисков. Наиболее распространены накопители с диаметром дисков 2.2, 2.3, 3.14 и 5.25 дюймов.
  • Число поверхностей — определяет количество физических дисков, нанизанных на ось.
  • Число цилиндров — определяет, сколько дорожек будет располагаться на одной поверхности.
  • Число секторов — общее число секторов на всех дорожках всех поверхностей накопителя.
  • Число секторов на дорожке — общее число секторов на одной дорожке. Для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства.
  • Время перехода от одной дорожки к другой обычно составляет от 3.5 до 5 миллисекунд, а у самых быстрых моделей может быть от 0.6 до 1 миллисекунды. Этот показатель является одним из определяющих быстродействие накопителя, т.к. именно переход с дорожки на дорожку является самым длительным процессом в серии процессов произвольного чтения/записи на дисковом устройстве.
  • Время установки или время поиска — время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.
  • Скорость передачи данных, называемая также пропускной способностью, определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Измеряется в мегабайтах в секунду (MBps) или мегабитах в секунду (Mbps) и является характеристикой контроллера и интерфейса.

В настоящее время используются в основном жёсткие диски ёмкостью от 10 Гб до 80 Гб. Наиболее популярными являются диски ёмкостью 20, 30, 40 Гб.

Кроме НГМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.

К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа — 1 или 2 Гб. Недостаток — высокая стоимость картриджа. Основное применение — резервное копирование данных.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры) запись производится на мини-кассеты. Ёмкость таких кассет — от 40 Мб до 13 Гб, скорость передачи данных — от 2 до 9 Мб в минуту, длина ленты — от 63,5 до 230 м, количество дорожек — от 20 до 144.

CD-ROM — это оптический носитель информации, предназначенный только для чтения, на котором может храниться до 650 Мб данных. Доступ к данным на CD-ROM осуществляется быстрее, чем к данным на дискетах, но медленнее, чем на жёстких дисках.

Компакт-диск диаметром 120 мм (около 4,75’’) изготовлен из полимера и покрыт металлической плёнкой. Информация считывается именно с этой металлической плёнки, которая покрывается полимером, защищающим данные от повреждения. CD-ROM является односторонним носителем информации.

Считывание информации с диска происходит за счёт регистрации изменений интенсивности отражённого от алюминиевого слоя излучения маломощного лазера. Приёмник или фотодатчик определяет, отразился ли луч от гладкой поверхности, был рассеян или поглощён. Рассеивание или поглощение луча происходит в местах, где в процессе записи были нанесены углубления. Фотодатчик воспринимает рассеянный луч, и эта информация в виде электрических сигналов поступает на микропроцессор, который преобразует эти сигналы в двоичные данные или звук.

Скорость считывания информации с CD-ROM сравнивают со скоростью считывания информации с музыкального диска (150 Кб/с), которую принимают за единицу. На сегодняшний день наиболее распространенными являются 52х-скоростные накопители CD-ROM (скорость считывания 7500 Кб/с).

Накопители CD-R (CD-Recordable) позволяют записывать собственные компакт-диски.

Более популярными являются накопители CD-RW, которые позволяют записывать и перезаписывать диски CD-RW, записывать диски CD-R, читать диски CD-ROM, т.е. являются в определённом смысле универсальными.

Аббревиатура DVD расшифровывается как Digital Versatile Disk, т.е. универсальный цифровой диск. Имея те же габариты, что обычный компакт-диск, и весьма похожий принцип работы, он вмещает чрезвычайно много информации — от 4,7 до 17 Гбайт. Воз-можно, именно из-за большой емкости он и называется универсальным. Правда, на сего-дня реально применяется DVD-диск лишь в двух областях: для хранения видеофильмов (DVD-Video или просто DVD) и сверхбольших баз данных (DVD-ROM, DVD-R).

Разброс ёмкостей возникает так: в отличие от CD-ROM, диски DVD записываются с обеих сторон. Более того, с каждой стороны могут быть нанесены один или два слоя информации. Таким образом, односторонние однослойные диски имеют объем 4,7 Гбайт (их часто называют DVD-5, т.е. диски емкостью около 5 Гбайт), двусторонние однослойные — 9,4 Гбайт (DVD-10), односторонние двухслойные — 8,5 Гбайт (DVD-9), а двусторонние двухслойные — 17 Гбайт (DVD-18). В зависимости от объема требующих хранения данных и выбирается тип DVD-диска. Если речь идет о фильмах, то на двусторонних дисках часто хранят две версии одной картины — одна широкоэкранная, вторая в классическом телевизионном формате.

Таким образом, здесь приведён обзор основных устройств внешней памяти с указанием их характеристик.

 

Вопрос 2

( В тетради)

Билет № 4 Вопрос 2




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.