Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ИСТОЧНИКИ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ



В качестве источников искусственного освещения применяются лампы накаливания и газоразрядные лампы.

В лампах накаливания источником света является раскаленная вольфрамовая проволока. Эти лампы дают непрерывный спектр излучения с повышенной (по сравнению с естественным светом) интенсивностью в желто-красной области спектра. По конструкции лампы накаливания бывают вакуумные, газонаполненные, бесспиральные (галогенные).

Общим недостатком ламп накаливания является сравнительно небольшой срок службы (менее 2000 часов), сильное отличие спектрального состава излучения от естественного (нарушается правильная цветопередача) и малая световая отдача y (отношение создаваемого лампой светового потока к потребляемой электрической мощности) (y = 8-20 лм/Вт, при идеальных условиях 1 Вт соответствует 683 лм). В промышленности они находят применение для организации местного освещения.

Наибольшее применение в промышленности находят газоразрядные лампынизкого и высокого давления.

Газоразрядные лампы низкого давления, называемые люминесцентными, содержат стеклянную трубку, внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством паров металлов (натрия, ртути 30 - 80 мг), галогенов (йод, фтор) и смесью инертных газов под давлением около 400 Па. На противоположных концах внутри трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью.

В последние годы появились газоразрядные лампы низкого давления со встроенным высокочастотным преобразователем. Газовый разряд в таких лампах (называемый вихревым) возбуждается на высоких частотах (десятки кГц) за счет чего обеспечивается очень высокая светоотдача.

К газоразрядным лампам высокого давления (0,03-0,08 МПа) относят дуговые ртутные люминесцентные лампы(ДРЛ), по форме напоминающие вытянутые лампы накаливания. В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра.

Основными достоинствами газоразрядных ламп является их долговечность (свыше 10 000 часов: до 20 000 часов), экономичность, малая себестоимость изготовления, благоприятный спектр излучения (близкий к солнечному спектру), обеспечивающий высокое качество цветопередачи, низкая температура поверхности. Светоотдача y этих ламп колеблется в пределах от 30 до 105 лм/Вт (ДРЛ – до 65 лм/Вт, люминесцентные – до 90 лм/Вт, ксеноновые и натриевые – 110…200 лм/Вт), что в несколько раз превышает светоотдачу ламп накаливания.

К недостаткам этих ламп следует отнести наличие вредных веществ при их разгерметизации, радиопомехи, сложную и дорогостоящую пускорегулирующую арматуру, громоздкость и невозможность быстрого вторичного включения лампы при кратковременном отключении, а также длительность выхода отдельных типов ламп на номинальный режим (ДРЛ – до 3…5 мин). Существенным и наверное основным недостатком ГРЛ является пульсация светового потока.

1.4. НОРМИРОВАНИЕ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Наименьшая освещенность рабочих поверхностей в производственных помещениях устанавливается в зависимости от характеристики зрительной работы и регламентируется строительными нормами и правилами СНиП 23-05-95 «Естественное и искусственное освещение».

Характеристика зрительной работы определяется минимальным размером объекта различения, контрастом объекта с фоном и свойствами фона.

Объект различения- рассматриваемый предмет, отдельная его часть или дефект, который следует контролировать в процессе работы.

Фон - поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается:

светлым при коэффициенте отражения r светового потока поверхностью более 0,4; средне светлым при коэффициенте отражения от 0,2 до 0,4; темным при коэффициенте отражения менее 0,2.

Контрастобъекта различения с фоном (К) определяется отношением абсолютной величины разности яркостей объекта ВО и фона ВФ к наибольшей их этих двух яркостей. Контраст считается большим при значении К более 0,5; средним - при значениях К от 0,2 до 0,5; малым - при значениях К менее 0,2.

В соответствии со СНиП 23-05-95 все зрительные работы делятся на 8 разрядов в зависимости от размера объекта различения и условий зрительной работы. Допустимые значения наименьшей освещенности рабочих поверхностей в производственных помещениях в соответствии со СНиП 23.05-95 приведены в приложении 1. (В зарубежных нормах размер объекта различения часто указывают в угловых минутах).

Кроме цветности источников света и цветовой отделки интерьера, влияющих на субъективную оценку освещения, важным параметром, характеризующим качество освещения, является коэффициент пульсации Кп:

Кп = [(Еmax - Emin)/2Eср]*100%, (4)

где: Emax - максимальное значение пульсирующей освещенности на рабочей поверхности; Еmin - минимальное значение пульсирующей освещенности; Еср - среднее значение освещенности за период колебаний.

Для газоразрядных ламп Кп » 25...65 %, для обычных ламп накаливания Кп » 7 %, для галогенных ламп накаливания Кп » 1 %.

Пульсации освещенности на рабочей поверхности не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта. Стробоскопический эффект - кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте fвсп = fвращ , медленно вращающимся в обратную сторону при fвсп > fвращ медленно вращающимся в ту же сторону при fвсп< fвращ, где fвсп и fвращ соответственно частоты вспышек и вращения диска. Пульсации освещенности на вращающихся объектах могут вызывать видимость их неподвижности, что в свою очередь, может явиться причиной травматизма.

Значение Кп меняется от нескольких процентов (для ламп накаливания) до нескольких десятков процентов (для люминесцентных ламп). Малое значение Кп для ламп накаливания объясняется большой тепловой инерцией нити накала, препятствующей заметному уменьшению светового потока Fлн ламп в момент перехода мгновенного значения переменного напряжения сети через 0 (Рис.1). В то же время газоразрядные лампы обладают малой инерцией и меняют свой сетевой поток Fлл почти пропорционально амплитуде сетевого напряжения (рис.1).

Рис.1.

Для уменьшения коэффициента пульсации освещенности Кп люминесцентные лампы включаются в разные фазы трехфазной электрической сети. Это хорошо поясняет нижняя кривая на рис.1а, где показан характер изменения во времени светового потока (и связанной с ним освещенности), создаваемого тремя люминесцентными лампами 3Fлл включенными в три различные фазы сети. В последнем случае за счет сдвига фаз на 1/3 периода провалы в световом потоке каждой из ламп компенсируются световыми потоками двух других ламп, так что пульсации суммарного светового потока существенно уменьшаются. При этом среднее значение освещенности, создаваемой лампой, остается неизменным и не зависит от способа их включения.

В соответствии со СНиП 23-05-95 коэффициент пульсации освещенности Кп нормируется в зависимости от разряда зрительных работ с сочетании с показателем ослепленности Р:

P = (s - 1)*103, (5)

где s - коэффициент ослепленности, определяемый как:

s = (DBпор)s / DВпор, (6)

где DВпор - пороговая разность яркости объекта и фона при обнаружении объекта на фоне равномерной яркости, (DBпор)s - то же при наличии в поле зрения блёского (яркого) источника света.

Рис.1а.

На освещенность рабочих поверхностей в производственном помещении влияют отражение и поглощение света стенами, потолком и другими поверхностями, расстояние от светильника до рабочей поверхности, состояние излучающей поверхности светильника, наличие рассеивателя света и т.д. Вследствие этого полезно используется лишь часть светового потока, излучаемого источником света.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.