Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Природа химической связи в координационных соединениях



Согласно методу валентных связей *, образование комплексных соединений * осуществляется за счет донорно-акцепторного * взаимодействия между комплексообразователем * и лигандами *. Обычно центральный атом имеет свободные орбитали *, а лиганды имеют неподеленные электронные пары. В образовании такой координационной связи могут участвовать ns-, np-, nd- или (n–1)d- орбитали, где n – номер внешнего электронного слоя комплексообразователя.

Координационноечисло * определяетсягибридизацией * орбиталей центрального атома:

КЧ
Гибридизация sp sp3, dsp2 sp3d2, d2sp3

 

Для примера рассмотрим образование координационных связей в ионе [Zn(NH3)4]2+. Здесь акцептором является ион Zn2+, имеющий вакантные орбитали на четвертом электронном слое и полностью занятый третий электронный слой. Четыре ковалентных связи * образуются с участием одной 4s- и трех 4p-орбиталей, которые перекрываются с орбиталями молекул аммиака (донор), содержащими неподеленные электронные пары:

Валентные орбитали цинка подвергаются sp3-гибридизации, поэтому лиганды (NH3) расположены в вершинах тетраэдра, в центре которого находится ион Zn2+.

Донорно-акцепторная связь в комплексных соединениях является весьма прочной, однако наряду с диссоциацией, в которой отщепляются ионы внешней сферы, в очень незначительной степени разрушается также внутренняя сфера комплекса *:

[Ag(NH3)2]Cl → [Ag(NH3)2]+ + Cl (первичная диссоциация)

[Ag(NH3)2]+ Ag+ + 2 NH3 (вторичная диссоциация)

Наиболее устойчивые комплексные соединения имеют наименьшие константы нестойкости. С помощью этих величин можно предсказать течение реакций между комплексными соединениями. Реакция протекает в сторону продуктов с меньшими константами нестойкости.

Иногда вместо константы нестойкости используют обратную ей величину, называемую константой устойчивости: Kуст=1/Kнест. Значения этих констант можно найти в справочнике.

 

4. Свойства разбавленных идеальных растворов. Осмос и давление пара. Кипение и застывание. Использование их математических уравнений для определения молекулярной массы растворенных веществ.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

Дисперсными системами называются системы, состоящие из некоторого вещества, в котором в очень мелком виде распределено другое вещество. Распределенное вещество называется дисперсной фазой, а вещество, в котором распределена дисперсная фаза – дисперсионной средой. Если частицы дисперсной фазы имеют размер порядка размеров молекул (<10–8 м), то дисперсную систему называютраствором (истинным раствором).

Простейшие составные части раствора, которые могут быть выделены в чистом виде, называются компонентами раствора. Обычно компонент, находящийся в избытке, считают растворителем, а остальные – растворенными веществами. Если один из компонентов – вода, то ее обычно принимают за растворитель.

Концентрациявеличина, выражающая относительное содержание данного компонента в растворе. Существуют следующие основные способы выражения концентрации растворов.

Массовая доля – величина, показывающая, какую долю от массы раствора составляет масса растворенного вещества:

или в процентах:

Молярная концентрация (молярность) – величина, показывающая, сколько молей растворенного вещества содержится в 1 литре раствора:

(моль/л),

где νв-ва – количество растворенного вещества в растворе, моль; Vр-ра – объем раствора, л.

Нормальная концентрация (нормальность, эквивалентная концентрация) – величина, показывающая, сколько эквивалентов растворенного вещества содержится в 1 литре раствора:

(экв/л),

где nв-ва – количество растворенного вещества в растворе, экв; Vр-ра – объем раствора, л.

Моляльная концентрация (моляльность) – величина, показывающая, сколько молей растворенного вещества в растворе приходится на 1 кг растворителя:

(моль/кг)

где νв-ва – количество растворенного вещества в растворе, моль; mр-ля – масса растворителя в растворе, кг.

Титр – величина, показывающая, какая масса растворенного вещества содержится в 1 мл раствора:

(г/мл)

где mв-ва – масса растворенного вещества в растворе, г; Vр-ра – объем раствора, мл.

Мольная доля вещества в растворе представляет собой отношение числа молей этого вещества к суммарному количеству молей всех компонентов раствора:

,

где νв-ва – число молей компонента, для которого определяется мольная доля; n – количество компонентов раствора.

Растворимость – способность вещества растворяться в том или ином растворителе. Она характеризуется концентрацией насыщенного раствора. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя. Если раствор содержит растворенного вещества больше, чем это соответствует растворимости при данной температуре, то он называется пересыщенным. Возможность существования пересыщенного раствора объясняется трудностью возникновения центров кристаллизации. В случае растворения твердых или жидких веществ в жидкостях растворимость возрастает с повышением температуры, а для газов – убывает. На растворимость газов большое влияние оказывает давление.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.