Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

НЕКОТОРЫЕ ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СОВРЕМЕННЫХ САМОЛЕТОВ



Еще недавно процесс проектирования в основном заключался в выборе схемы и основных геометрических параметров самолета и выполнялся небольшой группой проектировщиков. Так, например, предварительная проработка проекта самолета Локхид F-104 (50-е годы) потребовала участия всего десяти конструкторов, четырех специалистов в области аэродинамики и небольшого числа других специалистов. Разработка опытного самолета заняла всего 1 год и была выполнена коллективом, насчитывавшим менее 100 человек.

Эволюция в развитии основных параметров и характеристик самолета сопровождалась постоянным усложнением не только конструкции и общей компоновки планера и силовой установки, но и всех его систем.

Самолеты выпуска 70-х годов существенно сложнее самолетов аналогичного назначения 50-х годов. Соответственно выросли и трудоемкость их изготовления, и время, затрачиваемое на создание. Практикой доказано, что время, необходимое для исследований в аэродинамических трубах, затраты человеческого труда и потребный объем вычислений для создания перспективных самолетов возрастают по экспоненциальному закону. Продолжительность разработки самолета (до первого полета опытного образца) составляет в среднем 3...4 года, а при разработке принципиально новых самолетов, не имеющих прототипов (ХВ-70, «Конкорд», «Харриер»), это время увеличивается более чем вдвое, достигая 8...10 лет. Время до первого полета серийного образца составляет от трех до восьми лет, а в ряде случаев и более («Мираж» F.1, «Харриер» – 10...11 лет, «Конкорд» – 14 лет).

Вследствие увеличения потребных ресурсов человеческого труда и машинного времени, необходимого на разработку конструкции, постоянно возрастает число специалистов, участвующих в создании самолетов. По зарубежным данным, трудозатраты в человеко-часах (чел.-ч) на разработку 1 кг массы конструкции самолета возросли с 40...5 чел.-ч/кг в начале пятидесятых годов до 25...30 чел.-ч/кг в настоящее время.

Все это вызывает увеличение расходов на создание самолетов. Тенденция изменения стоимости разработки и цены одного экземпляра самолета за последние 40 лет показана на рис. 1.4.

Рис. 1.4. Изменение стоимости разработки и цены одного самолета по годам:

–––– стоимость разработки самолета; – – – цена одного самолета.

Планируемые и истинные величины стоимости и времени проектирования и изготовления, как правило, существенно отличаются. Это объясняется ограниченными возможностями человека обрабатывать огромные потоки информации, принимать решения в условиях большой неопределенности, вызванной невозможностью достаточно глубокой проработки всех вопросов, связанных с проектированием и изготовлением самолета на различных этапах его разработки.

Привлечение к разработке современного самолета большого числа людей, все более узко специализированных в отдельных областях знаний, превращает организацию их целенаправленной деятельности в сложную проблему.

При современных все ускоряющихся темпах научно-технического прогресса динамика процесса проектирования является одной из важнейших его характеристик и всемерное сокращение сроков проектирования становится одним из главных требований. Действительно, при увеличении сроков проектирования новизна и оригинальность решений, используемых в проекте, теряются. Еще не будучи реализованным, проект может морально устареть и потерять смысл.

Чтобы обеспечить гарантию успеха программы создания современного самолета в условиях ограниченных материальных ресурсов и сроков разработки, нужна более высокая степень точности прогнозирования характеристик самолета при его проектировании. Это одна из трудноразрешимых задач разработки обширных и сложных авиационных программ.

В настоящее время наметились следующие пути преодоления отмеченных выше сложных проблем. Одним из путей повышения точности прогнозирования, а следовательно, снижения риска из-за принятия необоснованных решений, является более широкое проведение научно-исследовательских и опытно-конструкторских работ по перспективным направлениям авиастроения. Целью таких работ является создание научно-технического задела. По зарубежным данным для создания конкурентоспособного самолета, который бы не устарел к моменту начала его эксплуатации, необходимо использовать в его разработке от 50 до 150 новых технических решений. При этом важно, чтобы не менее 2/3 из них были отработаны и проверены уже к началу проектирования. В этих условиях также возрастает роль моделирования, полунатурных и натурных экспериментов на возможно более ранних этапах разработки проекта. Например, можно испытать новый двигатель или какую-либо систему самолета, установив их на серийный самолет или летающую лабораторию. Это тем более важно, что циклы создания отдельных подсистем самолета, например планера и двигателя, значительно отличаются.

Второй путь связан с разработкой и использованием фундаментальных методов анализа и принятия решений на базе математических моделей, адекватно отображающих характер и закономерности исследуемых объектов и процессов. Реализация этого направления в значительной степени связана с дальнейшим развитием теории проектирования самолетов, а также с применением ЭВМ в их проектировании.

В настоящее время с целью сокращения сроков и стоимости разработки проекта при одновременном повышении качества проектирования ставится задача использования ЭВМ и средств машинной графики при решении всех задач проектирования, не связанных с проявлением неповторимых человеческих качеств (интуиция, воображение, исследовательские способности).

Известно, что проектирование сложного технического объекта – итерационный процесс последовательного приближения к заданным или оптимальным характеристикам. Широкое применение ЭВМ позволит существенно расширить вариантность проектирования, степень приближения к наилучшему решению за более короткое время, т.е. повысить качество проектирования и снизить сроки разработки проекта. Схематично это иллюстрируется графиком, представленным на рис. 1.5.

Рис. 1.5. Преимущества автоматизированного проектирования:

–––– обычные методы проектирования; – – – автоматизированное проектирование;

А – выигрыш во времени; В – выигрыш в качестве.

Разработка теоретических основ проектирования, значительные успехи в области вычислительной техники позволяют говорить о возможности автоматизации большинства операций процесса проектирования в ближайшем будущем. Успехи, достигнутые в разработке методов, алгоритмов и программ расчета аэродинамических, весовых, прочностных характеристик, параметров силовых установок, оценок летно-технических, экономических и эффективностных данных, уже привели к созданию целого ряда комплексных программ и автоматизированных систем проектирования самолетов, применяемых на различных этапах разработки проекта.

Использование ЭВМ при разработке проектов самолетов оказывает влияние на организацию процесса проектирования, предъявляет новые требования к квалификации проектировщиков. От них теперь требуется не только знание физических процессов, обусловливающих создание самолета, его эксплуатацию, но и знание математических приемов, позволяющих формализовать эти процессы, то есть представить их в виде, позволяющем получить требуемое решение на ЭВМ.


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.