Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Регенерация клеточной стенки и реверсия к клеточным формам



Исследование реверсии протопластов бактерий и грибов выявило сходство протекания у них данного процесса. Условно он может быть разделен на три этапа: 1) регенерация клеточной стенки, 2) реверсия, появление клеток-ревертантов, 3) восстановление нормального цитокинеза и появление клеток исходной формы.

Вместе с тем каждой группе микроорганизмов присущи свои особенности протекания реверсии протопластов, связанные со строением клеток и клеточных стенок, характером метаболизма и цитокинеза.

Реверсия бактериальных протопластов. Если при обработке лизоцимом или пенициллином в изотонической среде клеточная стенка с бактериальной клетки полностью не удалена, то при исключении этих агентов из среды происходит быстрое восстановление клеток. Если же клеточная стенка удалена полностью, образовавшийся истинный протопласт неспособен в обычных условиях ее регенерировать. Одним из условий, позволяющих таким формам ревертировать к исходному состоянию, является наличие в среде культивирования твердой или полутвердой основы. Ею может быть желатина (5-30%), агар (0,7-2%), мембранные фильтры, убитые бактериальные клетки или клеточные стенки. Причем использование твердого субстрата предпочтительнее.

 

Реверсия протопластов мицелиальных грибов. Реверсия к мицелиальным формам у грибных протопластов происходит как в жидкой, так и на поверхности твердой среды, или в слое полужидкого агара. Многие исследователи показали, что реверсия грибных протопластов может проходить тремя способами, различающимися характером формирования первичного мицелия. При первом способе протопласты первоначально образуют цепочку из дрожжеподобных клеток (до 20 клеток). Затем терминальная, уже осмотически устойчивая, продуцирует первичную гифу, образующую мицелий. Второй способ реверсии начинается с регенерации протопластами клеточной стенки, вследствие чего они становятся резистентными к осмотическому шоку. После чего протопласт образует зародышевую трубку. Третий способ реверсии грибных протопластов необычен. Протопласт, сохраняя сферическую форму, формирует новую оболочку в виде полочки, затем туда переносится содержимое материнского протопласта. Если появляется цепочка таких оболочек, то цитоплазма передвигается по этой цепочке, оставляя позади себя "тени" из клеточных стенок. Последняя клетка цепочки образует первичную гифу. Грибные протопласты могут ревертировать одним из трех способов, или у одного вида наблюдается все три способа реверсии. Трудно сказать, что влияет на выбор способа реверсии, возможно, видовые особенности организма, тип его цитокинеза, метод получения и условия инкубации протопластов или состав регенерационной среды.

Растущие и ревертирующие протопласты - хорошая модель для изучения биосинтеза клеточной стенки и взаимоотношений между ростом и ядерным делением клетки.

 

4.2. Культивирование растительных клеток

Идея возможности культивирования клеток вне организма была высказана еще в конце XIX века. Период с 1892 по 1902 гг. можно считать предысторией развития метода культуры клеток и тканей растений. В это время немецкие ученые Х. Фехтинг, К. Рехингер, Г. Габерландт предпринимали попытки выращивать изолированные из растений кусочки тканей, группы клеток, волоски. Не достигнув экспериментальных успехов, эти первые исследователи, однако высказали ряд идей, реализованных позднее.

В последующие 20 лет были получены первые результаты по культивированию тканей животных на питательных средах с добавлением сывороток. Но в растительном мире каких-либо значительных успехов достигнуть не удалось, не смотря на попытки создания оптимальных питательных сред, способных обеспечивать длительное существование и размножение клеток растений in vitro.

В 1922 году В. Роббинс и Котте независимо показали возможность культивирования на синтетических питательных средах клеток меристемы кончика корня томатов и кукурузы. Эти опыты положили начало применению метода культивирования изолированных клеток и органов растений.

В 30-60-е годы, благодаря работе большого числа ученых (Ф. Уайт, Р. Готре и другие), число видов растений, клетки и ткани которых выращивали in vitro, достигло значительного количества (более 150). Были описаны составы питательных сред, определены потребности культур в витаминах и стимуляторах роста, разработаны методы получения и выращивания больших масс клеточных суспензий, а также культивирования отдельной, выделенной из суспензии клетки. Ф. Стюард, работая с культурой изолированной флоэмы моркови, получил из нее в 1958 году целые растения. Значительный вклад в развитие культуры клеток и тканей растений внесли исследования Р. Г. Бутенко и ее сотрудников, использовавших эти методы для изучения физиологии растительных клеток и морфогенеза растений.

В последующие годы были предложены методы получения изолированных протопластов из растительных тканей, найдены условия культивирования, при которых они способны образовывать новую клеточную стенку, делиться и давать начало клеточным линиям. С использованием изолированных протопластов были разработаны методы гибридизации соматических клеток путем слияния протопластов с помощью ПЭГ (полиэтиленгликоля) и введения в них вирусных РНК, клеточных органелл, клеток бактерий. С помощью метода культуры меристем были получены безвирусные экономически важные растения с высоким коэффициентом размножения.

В настоящее время активно продолжается разработка методов глубинного культивирования клеток, методов электрослияния изолированных протопластов и т. д.

Использование методов получения сомаклональных вариантов, экспериментальных гаплоидов, скрининга биохимических мутантов привели к появлению более продуктивных и приспособленных к условиям культивирования клеточных штаммов, используемых для создания новых форм и сортов сельскохозяйственных, лекарственных, декоративных и других растений.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.