Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ПРИНЦИПЫ ГЕННОЙ ТЕРАПИИ



В зависимости от способа введения экзогенных ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo). Клеточная генная терапия или терапия ex vivo предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансфецированных клеток и реинфузию их тому же пациенту . В настоящее время в большинстве допущенных к клиническим испытаниям программ генной терапии используется именно этот подход.

Для лечения наследственных болезней необходимо:

поставить точный диагноз;

начать лечение до развития необратимых повреждений тканей;

иметь четкое представление о патогенезе заболевания и о вызывающих его биохимических нарушениях. Патогенетическое лечение направлено на коррекцию биохимических и физиологических процессов, нарушенных в результате изменения концентрации белкового продукта мутантного гена. Этот метод лечения наиболее эффективен при наследственных болезнях обмена, основным патогенетическим механизмом которых является нарушение утилизации субстрата. Воздействие на процессы обменных превращений может осуществляться несколькими путями и зависит, прежде всего, от того являются ли патологические симптомы заболевания следствием нарушения утилизации субстрата (вводимого извне или синтезированного в организме) или они обусловлены недостатком продуктов его метаболизма в организме больного.

Методы генотерапии:

Используют два основных подхода, различающиеся природой клеток- мишеней:

- фетальную генотерапию , при которой чужеродную ДНК вводят в зиготу или эмбрион на ранней стадии развития; при этом ожидается, что введенный материал попадет во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению)

- соматическую генотерапию , при которой генетический материал вводят только в соматические клетки и он не передается половым клеткам.

Есть и третий подход - активация собственных генов организма с целью полного или частичного преодоления действия мутантного гена. Яркий пример такого подхода - использование гидроксимочевины для активации синтеза гемоглобина F у больных с серповидноклеточной анемией и талассемиям

Лечение наследственной болезни может быть симптоматическим или патогенетическим . В последнем случае проводится коррекция на уровне метаболитов, дефектного белка или гена

При симптоматическом и патогенетическом подходах используются все методы современного лечения (лекарственное, генетическое, рентгенорадиологическое, физиотерапевтическое, климатическое и т. д.). Генетический диагноз, клинические данные о состоянии больного и вся динамика болезни определяют поведение врача на протяжении всего периода лечения со строгим постоянным соблюдением гипполкратовского принципа "не навреди". При лечении наследственных болезней надо быть особенно внимательным в соблюдении этических и деонтологических принципов в отношении пациента и членов его семьи. Ведь часто речь идет о тяжелых хронических больных с детского возраста.

Симптоматическое лечение включает в себя не только терапию лекарственными средствами. Многие физические методы лечения (климатотерапия, бальнеолечение, разные виды электротерапии, теплолечение) применяются при наследственных болезнях нервной системы, обмена веществ, заболеваниях скелета. У больных после курсов такой терапии улучшается самочувствие, увеличивается продолжительность жизни. Практически при всех наследственных болезнях показано физиотерапевтическое лечение. Например, лекарственная терапия муковисцидозе постоянно дополняется многообразными физиотерапевтическими процедурами (ингаляции, массаж и другие). К симптоматическому можно отнести рентгенорадиологическое лечение при наследственно обусловленных опухолях. Симптоматическое лечение (особенно лекарственное и диетическое) широко применяется и будет использоваться в будущем наряду с самым совершенным патогенетическим и этиотропным лечением наследственных болезней.

Аллотрансплантация может рассматриваться как передача нормальной генетической информации пациенту с нарушенным обменом веществ. Таким образом, трансплантацию можно рассматривать как метод генной терапии. Такой подход предполагает пересадку клеток, тканей и органов, имеющих нормальную ДНК, для продукции активных ферментов или других продуктов гена у реципиента. Аллотрансплантация выполняется при разных наследственных болезнях и позволяет непрерывно восполнять недостаток ферментов, гормонов или предохранять орган от функциональных нарушений, обусловленных мутацией структурного гена. Примером может служить трансплантация надпочечников при адренокортикальной недостаточности, пересадка сердца при первичной кардиомиопатии. Огромные возможности хирургического лечения наследственных болезней, используются еще не в полной мере. В этом плане весьма перспективны микрохирургия и эндоскопическая хирургия.

Наследственные болезни настолько разнообразны по типам мутаций, по звеньям нарушенного обмена, степени вовлеченности в патологический процесс органов и систем, по характеру течения, что невозможно подробно описать лечение всех наследственных болезней. Изложим общие принципы лечения наследственной патологии и разработки новых методов.

Первый метод – диетотерапия: исключение или добавление определённых

веществ в рацион. Примером могут служить диеты: при галактоземии, при

фенилкетонурии, при гликогенозах и т. д.

Второй метод – возмещение не синтезируемых в организме веществ, так

называемая заместительная терапия. При сахарном диабете используют инсулин.

Известны и другие примеры заместительной терапии: введение антигемофильного

глобулина при гемофилии, гамма-глобулина при иммунодефицитных состояниях и

др.

Третий метод – удаление токсических продуктов обмена из организма.

Характерным примером может служить выведение меди при гепатолентикулярной

дегенерации с помощью пеницилламина, сульфида калия и других препаратов.

Четвертый метод – хирургическое лечение. Прежде всего это относится к

новым методам пластической и восстановительной хирургии (врождённые пороки

сердца и сосудов, расщепление губы и нёба, различные костные дефекты и

деформации

Пятый метод – исключение из употребления лекарств, как, например,

барбитуратов при порфирии, сульфаниламидов при глюкозо-6-

фосфатдегидрогеназы.

Способ же борьбы с этими генетическими изменениями заключается в искусственном введению в пострадавшую клетку новой генетической информации, призванной поправить ту, с которой связана болезнь. Эта концепция, по-видимому, появилась сразу после осознания механизмов трансформации клеток опухолеродными вирусами. Они, эти вирусы, осуществляли стабильное внедрение генетического материала в геном клетки хозяина, и поэтому тогда же было предложено использовать их, как векторы для доставки желаемой генетической информации в геном клеток, чтобы в случае необходимости поправлять клеточные дефекты и лечить болезни генома. Однако это были только общие идеи. Предстояло решить массу технических и этических проблем, прежде чем достичь сегодняшних успехов и надежд. Исторически генная терапия нацеливалась на лечение наследственных генетических заболеваний, но впоследствии поле ее применения, по-крайней мере теоретически, расширилось таким образом, что она стала рассматриваться, как потенциально универсальный подход к лечению практически всего спектра болезней, начиная от инфекционных, включая так называемые болезни современного общества такие как рак, атеросклероз, диабет и кончая классически генетическими, наследственными заболеваниями.

Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию.

Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка

Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP** или фермента, катализирующего легко обнаруживаемую реакцию.

Вирусы – неклеточная форма жизни, составляющая царство Vira. С точки зрения

паразитологии вирусы – внутриклеточные генетические паразиты; с точки зрения

биохимии вирусы – белок-нуклеиновые комплексы; с точки зрения молекулярной

генетики – мобильные генетические элементы. За открытие генетической природы

вирусов в 1969 г. Альфреду Херши была присуждена Нобелевская премия.

Вирусы – это инфекционные агенты. Каждая инфекция представляет собой

столкновение генетических программам вируса и его хозяина, и их взаимодействие

является основой для продолжающейся эволюции. Детали такого взаимодействия не только обогащают наше понимание биосферы вообще и отношений вируса с хозяином в частности, но также создают возможности для разработки противовирусных препаратов, для использования вирусов в качестве векторов экспрессии и создания живых ослабленных вакцин. Поскольку окружающая среда, в которой вирусы реплицируются и развиваются, определяется в значительной степени их хозяевами, понимание вирусной репликации также освещает биологию хозяина на молекулярном, клеточном, организменном и популяционном уровнях.

Клетки всех живых организмов содержат два вида нуклеиновой кислоты – ДНК (двунитевая ДНК клеточного генома) и РНК (мРНК, тРНК, рРНК, соответственно матричная, транспортная и рибосомальная РНК). В начале 1940-х годов стало более или менее ясно, что вирусы также содержат нуклеиновые кислоты. Однако, в отличие от клеток, вирионы вирусов содержат только один вид нуклеиновой кислоты – или ДНК или РНК. И та и другая являются хранителями наследственной информации и выполняют функции генома. Способность РНК хранить наследственную информацию – уникальное свойство вирусов, которое впервые было продемонстрировано Гирером и Шраммом (Gierer A., Schramm G., 1956 г.) и Френкель-Конратом (Fraenkel-Conrat H. et al., 1957 г.) при изучении инфекционности РНК вируса табачной мозаики (ВТМ). Было показано, что очищенные препараты РНК ВТМ сохраняют инфекционность при полном отсутствии белка. Это открытие вопиющим образом противоречило всеобщему убеждению, что единственная роль РНК заключается в передаче информации от ДНК к белку. В настоящее время способность РНК служить хранилищем генетической информации уже ни у кого не вызывает сомнений.

Следует учитывать, что наличие одного вида нуклеиновой кислоты является

характеристикой вириона, но не вируса. В жизненном цикле ДНК-содержащих вирусов геномная нуклеиновая кислота транскрибируется, образуя РНК. Впервые присутствие у ДНК-содержащих вирусов (вирус осповакцины) ДНК-зависимой РНК-полимеразы было показано в 1967 г. Катес и МакАусланом (Kates J.R., McAuslan B.R., 1967). РНК-содержащие вирусы транскрибируют свой геном с использованием РНК-зависимой РНК-полимеразы, которая впервые обнаружена у реовирусов в 1968 г. Целый ряд РНК-содержащих вирусов имеют в жизненном цикле стадию обратной транскрипции и синтезируют ДНК на матрице РНК с помощью фермента обратной транскриптазы (РНК-зависимая ДНК-полимераза или ревертаза). Открытие этого фермента в составе онкогенных РНК-содержащих вирусов сделано Балтимором в 1970 г. (Baltimore C., 1970).

Примерно 20% вирусов имеют ДНК-геном, 80% - РНК-геном. При этом РНК-геномные вирусы более древние, ДНК-геномные – более молодые. Это и не удивительно. Согласно современным представлениям об эволюции жизни на земле, появлению ДНК (клеток с ДНК, вирусов с ДНК) предшествовал длительный период эволюции рибонуклеиновых кислот.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.