Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Методы изучения мутаций. 1) Метод гибридологического анализа позволяет следить за расщеплением и



1) Метод гибридологического анализа позволяет следить за расщеплением и рекомбинацией маркёров и тем самым сравнительно легко различать хромосомные (ядерные) и внехромосомные (цитоплазматические) мутации. У эукариот первые подчиняются закономерностям наследования при моногибридном скрещивании, так как они проходят через стадию мейоза. У прокариот, лишённых мейоза, наследование совместно с известными сцепленными хромосомами, цитоплазматическими генами служит показателем соответствующей локализации мутации.

2) Цитогенетический метод – исследование строения хромосом под световым микроскопом. Определение мутаций, связанных с крупными хромосомными перестройками.

3) Биохимический метод. Непосредственное отслеживание изменений в последовательностях нуклеотидов в пределах отдельных генов и сравнение их с изменениями в составе и структуре кодируемых ими продуктов.

 

 

Правильное сворачивание ( фолдинг ) полипептидных цепей белков в клетках эукариот обеспечивается специфическими белками, называемыми шаперонами (chaperone). Шапероны необходимы для эффективного формирования третичной структуры полипептидных цепей других белков, но они не входят в состав конечной белковой структуры.

Новосинтезированные белки после выхода с рибосом для правильного функционирования должны укладываться в стабильные трехмерные структуры и оставаться такими на протяжении всей функциональной жизни клетки. Поддержание контроля качества структуры белка и осуществляется шаперонами, катализирующими укладку полипептидов. Сборка полипротеинов и укладка мультибелковых комплексов также осуществляется шаперонами. Шапероны связываются с гидрофобными участками неправильно уложенных белков, помогают им свернуться и достигнуть стабильной нативной структуры и, тем самым, предотвращают их включение в нерастворимые и нефункциональные агрегаты. В течение своей функциональной жизни белок может подвергаться различным стрессам и денатурации. Такие частично денатурированные белки могут стать, во-первых, мишенью протеаз, во-вторых, агрегировать и, в-третьих, укладываться в нативную структуру с помощью шаперонов. Баланс и эффективность, с которой происходят эти три процесса, определяются соотношением компонентов, участвующих в этих реакциях [ Wickner ea 1999 ].

Шапероны, кроме своей основной функции - укладки белков, осуществляют и много других важных функций, связанных с изменением конформации белков, а именно:

- Транспорт многих белков из одного компартмента в другой, например, перенос субъеденицы фермента Rubisco из цитоплазмы в хлоропласт происходит при участии шаперона Hsp70, который находится с ним в комплексе [ Checa ea 1997 ].

- Участие в сигнальных путях. Например, присутствие Hsp70 необходимо для активации фосфатазы, которая путем дефосфорилирования ингибирует протеинкиназу JNK , компонент сигнала стресс-индуцированного апоптоза , т.е. Hsp70 является частью антиапоптозного сигнального пути [ Yaglom, 1999 ]

- Регуляция функций различных молекул. Например, стероидный рецептор , находящийся в цитоплазме, связан с Hsp90; лиганд, попадающий в цитоплазму, присоединяется к рецептору и вытесняет шаперон из комплекса. После этого комплекс рецептор-лиганд приобретает способность связываться с ДНК, мигрирует в ядро и осуществляет функцию транскрипционного фактора [ Scherrer ea 1992 ].

Способность белка изменять свою конформацию с "нормальной" на "прионную", и в результате этого участвовать в образовании упорядоченных белковых агрегатов - ключевой момент в прионообразовании. Исходя из этого, можно предполагать влияние клеточных шаперонов ( белков теплового шока ) на кинетику данного процесса.

Шапероны представлены семействами, состоящими из гомологичных по строению и функциям белков, которые отличаются по характеру экспрессии и присутствию в разных компартментах клетки. Например, Hsp70 (сокращение от heat shock protein), Hsp60,Hsp90, Hsp100 и их кошапероны (белки, помогающие шаперонам осуществлять свою функцию более эффективно) (Agashe et.al,.2000;Horwich et.al., 1999); Bukau et.al., 1998 и Martin et.al., 1997), а также гомологичные им белки, например белок, связывающийся с тяжелой цепью иммуноглобулинов ( BiP). Шапероном является также ядерный нуклеоплазмин , обеспечивающий сборку нуклеосом . У E. coli соответствующие функции выполняют белки SecB , триггерный фактор, а также GroEL и GroES , обеспечивающие экспорт полипептидов из цитоплазмы и участвующие в морфогенезе бактериофагов. Два последних белка - GroEL и GroES, известные также как Cpn60 и Cpn10, - кодируются генами оперона groE, регулируемого тепловым шоком.

Белки, эволюционно родственные белку GroEL, получили название шаперонинов . Один из таких белков, обнаруженный в хлоропластах высших растений, участвует в сборке D-рибулозо-1,5- дифосфаткарбоксилазы-оксигеназы (Rubisco), которую часто используют в качестве модельного белка в исследованиях механизмов сворачивания полипептидных цепей.

Основные шапероны млекопитающих и дрожжей структурно и функционально очень похожи между собой

У дрожжей имеется шаперон, который не встречается у млекопитающих, - Hsp104 , относящийся к семейству Hsp100. Этот шаперон особо важен для прионных белков дрожжей, поскольку осуществляет расщепление прионных полимеров ( Kushnirov and Ter-Avanesyan, 1998 ) и, в конце концов, их частичную конверсию в мономерную форму.

Шапероны разных семейств могут функционировать в разных компартментах клетки. Например, существуют различные члены семейства Hsp70, работающие в цитоплазме, митохондриях, хлоропластах и в эндоплазматическом ретикулуме. Для функционирования всех шаперонов требуется гидролиз ATP .

 

Прионы

У этого термина существуют и другие значения, см. Прионы (значения).

Не путать с гипотетическими элементарными частицами — преонами

Прио́ны (от англ. proteinaceous infectious particles — белковые заразные частицы) — особый класс инфекционных агентов, чисто белковых, не содержащих нуклеиновых кислот, вызывающих тяжёлые заболевания центральной нервной системы у человека и ряда высших животных (т. н. «медленные инфекции»).

Прионный белок, обладающий аномальной трёхмерной структурой, способен прямо катализировать структурное превращение гомологичного ему нормального клеточного белка в себе подобный (прионный), присоединяясь к белку-мишени и изменяя его конформацию. Как правило, прионное состояние белка характеризуется переходом α-спиралей белка в β-слои. Прионы — единственные инфекционные агенты, размножение которых происходит без участия нуклеиновых кислот.

История

Во второй половине XX века врачи столкнулись с необычным заболеванием человека — постепенно прогрессирующим разрушением головного мозга, происходящим в результате гибели нервных клеток. Это заболевание получило название губчатой энцефалопатии. Похожие симптомы были известны давно, но наблюдались они не у человека, а у животных (скрейпи овец), и долгое время между ними не находили достаточной обоснованной связи.

Новый интерес к их изучению возник в 1996 г., когда в Великобритании появилась новая форма заболевания, обозначаемая как «новый вариант болезни Крейтцфельдта-Якоба (nvCJD)».

Важным событием было распространение «коровьего бешенства» в Великобритании, эпидемия которого была сначала в 1992—1993 гг, а потом и в 2001 г охватила несколько европейских государств, но тем не менее экспорт мяса во многие страны не был прекращён. Заболевание связывают с использованием «прионизированной» костной муки в кормах ипремиксах, изготовленной из туш павших или заболевших животных, возможно, и не имевших явных признаков заболевания.

Пути переноса причинного фактора болезни, механизмы проникновения прионов в организм и патогенез заболевания изучены пока недостаточно.

В 1997 г. американскому врачу Стенли Прузинеру была присуждена Нобелевская премия за изучение прионов.

Свойства молекул

Прионовые белки млекопитающих не сходны с прионовыми белками дрожжей по аминокислотной последовательности. Несмотря на это, основные структурные особенности (формирование амилоидных волокон и высокая специфичность, препятствующая передаче прионов от одного вида организмов к другому) у них общие. Вместе с тем, прион, отвечающий за коровье бешенство, обладает способностью передаваться от вида к виду.

Правый рисунок — модель двух конформаций приона; слева известная, нормальная, конформация структуры терминального участка C-terminal PrPC. (для отображения/загрузки см.RCSB Protein Databank).

[править]Молекулярные основы патогенеза

Предполагаемый механизм «размножения» прионов.

В ходе исследований мозговых тканей умерших от прионных инфекций животных было показано, что прионы не содержат нуклеиновых кислот, а представляют собой белки.[1] Одним из первых охарактеризованных прионных белков стал PrP (от англ.prion-related protein или protease-resistant protein) массой около 35 кДа. Известно, что PrP может существовать в двухконформациях — «здоровой» — PrPC, которую он имеет в нормальных клетках (C — от англ. cellular — «клеточный»), в которой преобладают альфа-спирали, и «патологической» — PrPSc, собственно прионной (Sc- от scrapie), для которой характерно наличие большого количества бета-тяжей. При попадании в здоровую клетку, PrPSc катализирует переход клеточного PrPC в прионную конформацию. Накопление прионного белка сопровождается его агрегацией, образованием высокоупорядоченных фибрил (амилоидов), что в конце концов приводит к гибели клетки. Высвободившийся прион, по-видимому, оказывается способен проникать в соседние клетки, также вызывая их гибель.

Функции белка PrPC в здоровой клетке — поддержание качества миелиновой оболочки, которая в отсутствие этого белка постепенно истончается. В норме белок PrPC ассоциирован с клеточной мембраной, гликозилирован остатком сиаловой кислоты. Он может совершать циклические переходы внутрь клетки и обратно на поверхность в ходе эндо- и экзоцитоза[2]. Один такой цикл длится около часа.[источник не указан 828 дней] В эндоцитозном пузырьке или на поверхности клетки молекула PrPC может разрезаться протеазами на две примерно равные части[источник не указан 1229 дней].

До конца механизм спонтанного возникновения прионных инфекций не ясен. Считается (но ещё не полностью доказано), что прионы образуются в результате ошибок в биосинтезе белков. Мутации генов, кодирующих прионный белок (PrP), ошибкитрансляции, процессы протеолиза — считаются главными кандидатами на механизм возникновения прионов. Согласно недавно проведённым исследованиям прионы способны к дарвиновской эволюции за счёт действия естественного отбора.[3]

Есть данные, дающие основание считать, что прионы являются не только инфекционными агентами, но и имеют функции в нормальных биопроцессах. Так, например, существует гипотеза, что через прионы осуществляется механизм генетически обусловленного стохастического старения.

Куру (болезнь)

[править]

Материал из Википедии — свободной энциклопедии

Куру (болезнь)
МКБ-10 A81.8
МКБ-9 046.0
OMIM  
DiseasesDB  
MedlinePlus  
eMedicine med/1248  
MeSH D007729  

Абориген с Южных гор Папуа-Новая Гвинея в национальной окраске

Ку́ру — болезнь, встречающаяся почти исключительно в высокогорных районах Новой Гвинеи у аборигенов племени форе, впервые обнаружена в начале XX века.

История

Болезнь была подробно описана в 1957 г. австралийским врачом Зигасом и американцем словако-венгерского происхождения Карлтоном Гайдучеком.

Слово «куру» на языке племени форе имеет два значения — «дрожь» и «порча». Члены племени форе верили, что болезнь является результатом сглаза чужим шаманом.

Куру — наиболее типичный пример трансмиссивных прионовых заболеваний человека — губкообразных энцефалопатий. Именно при изучении куру сформировалась концепция трансмиссивных спонгиоформных энцефалопатий человека.

[править]Клиника

Болезнь распространялась через ритуальный каннибализм. С искоренением каннибализма куру практически исчезла. Однако, всё ещё появляются отдельные случаи, потому что инкубационный период может длиться более 30 лет.

Главными признаками заболевания являются сильная дрожь и порывистые движения головой, иногда сопровождаемые улыбкой, подобной той, которая появляется у больных столбняком (risus sardonicus). Это, однако, не является типичным признаком. Обозначение «смеющаяся смерть» для куру находится на совести создателей заголовков газетных статей. Члены племени форе так о болезни никогда не говорят.

В начальной стадии болезнь проявляется головокружением и усталостью. Потом добавляется головная боль, судороги и, в конце концов, типичная дрожь. В течение нескольких месяцев ткани головного мозга деградируют, превращаясь в губчатую массу. Заболевание характеризуется прогрессирующей дегенерацией нервных клеток центральной нервной системы, особенно в той области головного мозга, которая контролирует осуществляемые человеком телодвижения. В результате происходит нарушение контроля мышечных движений и развивается тремор туловища, конечностей и головы. Это заболевание встречается преимущественно у женщин и детей и считается неизлечимым — через 9-12 месяцев оно заканчивается смертельным исходом.

[править]Патогенез

По современным данным, куру — прионная инфекция, один из видов губчатой энцефалопатии.

За открытие инфекционного характера болезни куру Карлтон Гайдучек был удостоен в 1976 г. Нобелевской премии по физиологии и медицине. Деньги премии он пожертвовал племени форе. Сам Гайдучек прионовую теорию не признавал и был убеждён, что губчатую энцефалопатию вызывают так называемые медленные вирусы. Эта теория всё ещё имеет сторонников, хотя их меньшинство.

Прионовую теорию развития губчатой энцефалопатии разработал другой американский учёный Стэнли Прузинер (англ. Stanley Prusiner), за что тоже был удостоен Нобелевской премии по физиологии и медицине в 1997 г.

[править]Иммунитет

В 2009 году американские учёные сделали неожиданное открытие: некоторые члены племени форе, благодаря появившемуся у них в сравнительно недавнем времени новому полиморфизму гена PRNP, имеют врождённый иммунитет к куру.[1] Результаты своих исследований они опубликовали в «Новоанглийском медицинском журнале»

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.