Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Этапы взаимодействия ионизирующего излучения с клетками и тканями организма человека



Первая - чисто физическая стадия взаимодействия, протекающая за миллиардные доли секунды, состоит в передаче части энергии фотона (частицы) одному из электронов атома с последующей ионизацией и возбуждением атомов (молекул).

 

Ионам и возбужденным атомам, обладающим избыточной энергией, заимствованной у фотона (частицы) высокой энергии, в силу этого свойственна повышенная химическая реактивность, они способны вступать в такие реакции, которые не возможны для обычных, невозбужденных атомов (молекул).

 

Вторая – физико-химическая стадия взаимодействия излучения с веществом протекает уже в зависимости от состава и строения облучаемого вещества. Принципиальное значение имеет наличие в облучаемой системе воды и кислорода. Если их нет, возможности химического воздействия активированных радиацией атомов ограничены, локализованы. Третья - химическая стадия лучевого воздействия длится, как правило, несколько секунд. На этой стадии появляются биохимические повреждения биологически важных макромолекул (нуклеиновых кислот, липидов, белков, углеводов).

 

Различают прямое воздействие радиации, когда происходит непосредственное взаимодействие ионизирующего излучения с критическими молекулами, и косвенное воздействие, через свободные радикалы, возникающие при взаимодействии ионизирующего излучения с водой, которые и наносят основное поражение.

 

Предполагается, что косвенное воздействие преобладает при редкоионизирующих излучениях (тормозное, гамма-, бета-излучения), а прямое – при плотноионизирующих (альфа-лучи и нейтроны).

 

30. Критические постлучевые внутриклеточные структуры.

 

Критическими при действии ионизирующего излучения внутриклеточными структурами являются хромосомы, состоящие из нуклеиновых кислот – хранителей наследственной информации и специальных белков. Поскольку большинство клеток располагают только одной или двумя копиями каждой молекулы ДНК, поражение ее будет более значимым, чем в случае с молекулой с тысячами копий (энзимы, например).

 

Под действием ионизирующего излучения из молекулы белка выбивается электрон, образуется дефектный участок, лишенный электрона, который мигрирует по полипептидной цепи за счет переброски соседних электронов до тех пор, пока не достигнет участка с повышенными электрон-донорными свойствами. В этом месте в боковых цепях аминокислот возникают свободные радикалы. Такие события происходят в результате прямого действия ионизирующих излучений. При косвенном действии образование свободных радикалов происходит при взаимодействии белковых молекул с продуктами радиолиза воды. Образование свободных радикалов влечет за собой изменение структуры белка, что приводит к нарушению его функций (ферментативной, гормональной, рецепторной и др.).Критическими внутриклеточными структурами при действии ионизирующего излучения также являются мембраны: изменения в протеинах и липидах, которые участвуют в образовании биомембран, могут повысить их проницаемость для различных молекул. В лизосомах это ведет к неуправляемому выбросу каталитических энзимов в клетку, что может привести к катастрофическим последствиям. Нарушение оболочки ядра может воздействовать на деление клеток и, тем самым, на ее жизнеспособность.

Биологическая стадия лучевого поражения. Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Именно ядро играет роль хранителя наследственной информации самой клетки, всего организма и даже биологического вида, передает эту информацию от клетки к клетке, от организма к организму, обеспечивая преемственную связь поколений. Эта информация зашифрована в особых палочкоядерных структурах, выявляющихся при делении клетки благодаря способности хорошо накапливать специальные красители и потому называемых хромосомами.

 

31. Критические постлучевые процессы в клетках и тканях организма человека.

 

Биологическая стадия лучевого поражения. Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Именно ядро играет роль хранителя наследственной информации самой клетки, всего организма и даже биологического вида, передает эту информацию от клетки к клетке, от организма к организму, обеспечивая преемственную связь поколений. Эта информация зашифрована в особых палочкоядерных структурах, выявляющихся при делении клетки благодаря способности хорошо накапливать специальные красители и потому называемых хромосомами.

 

Гибель клеток может возникать в широком временном диапазоне: часов-лет. По механизму лучевого поражения клеток следует различать две основные формы гибели: интерфазную (не связанную с митозом) и репродуктивную – гибель при попытке разделиться.

 

Первая форма наблюдается при самых различных воздействиях на клетку, вторая – типичная для ионизирующей радиации и других мутагенных агентов.

 

Радиобиологи различают два основных типа лучевых повреждений ДНК: сублетальные и потенциально летальные повреждения.

 

Первый – это такие вызванные радиацией изменения, которые сами по себе не ведут к гибели клеток, но облегчают ее при продолжающемся или последующем облучении. Например, одиночные разрывы сами по себе не смертельны, но чем больше их возникает в молекуле ДНК, тем больше вероятность их совпадения и образования летального двойного разрыва.

 

Второй тип – потенциально летальные повреждения – сами по себе вызывают гибель клетки, но все же в определенных условиях могут быть устранены репаративной системой.

 

32. Виды полей и излучений, используемых в магнитно-резонансной томографии.

 

Магнитно-резонансная томография. Важнейшее значение в современной лучевой диагностике приобрела магнитно-резонансная томография (МРТ).. Большинство магнитов имеют магнитное поле, параллельное длинной оси тела человека. Сила магнитного поля измеряется в теслах (Тл). Для клинической МРТ используются поля силой 0,02 -3 Тл.

 

Когда пациента помещают в сильное магнитное поле, все маленькие протонные магниты тела (ядра водорода) разворачиваются в направлении внешнего поля (подобно компасной стрелке, ориентирующейся на магнитное поле Земли). Помимо этого, магнитные оси каждого протона начинают вращаться (прецессировать) вокруг направления внешнего магнитного поля. При пропускании через тело пациента радиоволн, имеющих равную частоту с частотой вращения протонов (Ларморовская частота), магнитное поле радиоволн заставляет магнитные моменты всех протонов вращаться по часовой стрелке. Это явление называют магнитным резонансом.

 

Под резонансом понимают синхронные колебания, и для изменения ориентации магнитных протонов магнитные поля протонов и радиоволн должны резонировать, т.е. иметь одинаковую частоту.

 

В тканях пациента создается суммарный магнитный момент: ткани намагничиваются, и их магнетизм ориентируется точно параллельно внешнему магнитному полю. Магнетизм пропорционален числу протонов в единице объема ткани. Огромное число протонов (ядер водорода), содержащихся в большинстве тканей, обусловливает тот факт, что магнитный момент достаточно велик для того, чтобы индуцировать электрический ток в расположенной вне пациента принимающей катушке. Этот индуцированный электрический ток «МР-сигнал» используется для реконструкции изображения.

 

В промежутке между передачей импульсов протоны подвергаются двум различным процессам релаксации Т1 и Т2. Релаксация – это последствие постепенного исчезновения намагниченности, вызванного небольшими различиями в силе местных магнитных полей. Т2 релаксация – потеря магнетизма. Т1 релаксация – время восстановления магнетизма. Чем короче Т1, тем быстрее восстанавливается магнетизм.

 

33. Принципы получения изображений и его особенности при магнитно-резонансной томографии.

 

Магнитно-резонансная томография. Важнейшее значение в современной лучевой диагностике приобрела магнитно-резонансная томография (МРТ). МРТ дает ценную диагностическую информацию о физических и химических параметрах, позволяющих судить о природе и морфологическом строении исследуемых органов и тканей. К тому же изображение можно получать в любой плоскости. Основными компонентами МР-томографа являются силовой магнит, радиопередатчик, приемная радиочастотная катушка и компьютер. Большинство магнитов имеют магнитное поле, параллельное длинной оси тела человека. Сила магнитного поля измеряется в теслах (Тл). Для клинической МРТ используются поля силой 0,02 -3 Тл.

 

Когда пациента помещают в сильное магнитное поле, все маленькие протонные магниты тела (ядра водорода) разворачиваются в направлении внешнего поля (подобно компасной стрелке, ориентирующейся на магнитное поле Земли). Помимо этого, магнитные оси каждого протона начинают вращаться (прецессировать) вокруг направления внешнего магнитного поля. При пропускании через тело пациента радиоволн, имеющих равную частоту с частотой вращения протонов (Ларморовская частота), магнитное поле радиоволн заставляет магнитные моменты всех протонов вращаться по часовой стрелке. Это явление называют магнитным резонансом.

 

Под резонансом понимают синхронные колебания, и для изменения ориентации магнитных протонов магнитные поля протонов и радиоволн должны резонировать, т.е. иметь одинаковую частоту.

 

В тканях пациента создается суммарный магнитный момент: ткани намагничиваются, и их магнетизм ориентируется точно параллельно внешнему магнитному полю. Магнетизм пропорционален числу протонов в единице объема ткани. Огромное число протонов (ядер водорода), содержащихся в большинстве тканей, обусловливает тот факт, что магнитный момент достаточно велик для того, чтобы индуцировать электрический ток в расположенной вне пациента принимающей катушке. Этот индуцированный электрический ток «МР-сигнал» используется для реконструкции изображения.

 

В промежутке между передачей импульсов протоны подвергаются двум различным процессам релаксации Т1 и Т2. Релаксация – это последствие постепенного исчезновения намагниченности, вызванного небольшими различиями в силе местных магнитных полей. Т2 релаксация – потеря магнетизма. Т1 релаксация – время восстановления магнетизма. Чем короче Т1, тем быстрее восстанавливается магнетизм.

 

Очень высокая информативность МРТ обусловлена рядом ее достоинств.

1. Особенно высокий тканевой контраст, основанный не на плотности, а на нескольких параметрах, зависящих от ряда физико-химических свойств тканей, и визуализация благодаря этому изменений, которые не дифференцируются при УЗИ и КТ.

2. Возможность управлять контрастом, ставя его в зависимость то от одного, то от другого параметра. Варьируя контраст, можно выделить одни ткани и детали и подавить изображение других. За счет этого МРТ, например, впервые позволила визуализировать без контрастирования все мягкотканные элементы суставов.

3. Отсутствие артефактов от костей, нередко перекрывающих мягкотканные контрасты при КТ, что позволяет без помех визуализировать поражение спинного и базальных отделов головного мозга.

4. Мультипланарность – возможность изображений в любой плоскости.

5. МРТ имеет и функциональные применения, например, изображение регургитации при клапанных пороках сердца в режиме кино или динамики движений в суставах.

6. МРТ отображает кровоток без искусственного контрастирования. Специальные ангиопрограммы с двумерным или трехмерным сбором данных позволяют получить изображение кровотока с отличным контрастом. Контрастные средства для МРТ. Контрастное разрешение на MP-изображение может быть существенно улучшено различными контрастными средствами. В зависимости от магнитных свойств МР-контрастные средства подразделяются на парамагнитные и супермагнитные.

 

Недостатки МРТ:

1. Плохо отображаются обызвествления

2. Длительное время изображения вместе с артефактами от дыхательных и других движений ограничивает применение МРТ в диагностике заболеваний грудной и брюшной полостей.

Вредность. При МРТ нет ионизирующего излучения и радиационной вредности. Для подавляющего большинства пациентов метод не представляет опасности.

 

МРТ противопоказана:

1. Пациентам с установленным водителем ритма или с внутриглазничными, внутричерепными и внутрипозвоночными ферромагнитными инородными телами и с сосудистыми клипсами из ферромагнитных материалов (абсолютное противопоказание).

2. Реанимационным больным из-за воздействия магнитных полей МР-томографа на системы жизнеобеспечения.

3. Пациентам с клаустрофобией (составляют примерно 1%); хотя она нередко уступает седативным средствам (реланиум).

4. Женщинам в первой трети беременности.

 

34. Контрастные средства в магнитно-резонансной томографии.

 

Парамагнитные контрастные средства. Парамагнитными свойствами обладают атомы с одним или несколькими неспаренными электронами. Это магнитные ионы гадолиния, хрома, никеля, железа, а также марганца. Наиболее широкое клиническое применение получили соединения гадолиния.

 

Контрастирующий эффект гадолиния обусловлен укорочением времени релаксации Т1 и Т2. В низких дозах преобладает воздействие на Т1, увеличивающее интенсивность сигнала. В высоких дозах преобладает воздействие на Т2 со снижением интенсивности сигнала. Наиболее широкое распространение имеют парамагнитные внеклеточные МР-контрастные средства:

1. Магневист (гадопентат димеглюмина).

2. Дотарем (гадотерат меглюмина).

3. Омнискан (гадодиамид).

4. Проханс (гадотеридол).

Суперпарамагнитные контрастные средства. Суперпарамагнитный оксид железа – магнетит. Его доминирующим воздействием является укорочение релаксации Т2. С увеличением дозы происходит снижение интенсивности сигнала.

 

Так же как в компьютерной томографии, пероральные контрастные средства используются при исследованиях органов брюшной полости, чтобы дифференцировать кишечник и нормальные или патологические ткани.

 

Магнетит (Fe3O4) – применяется при исследованиях желудочно-кишечного тракта. Это суперпарамагнитное вещество с преимущественным действием на Т2 релаксацию. Действует как негативное контрастное средство, т.е. снижает интенсивность сигнала.

 

35. Принципы получения изображений и его особенности при дистанционной термографии.

 

Тепловые изображения. Анализ тепловых полей тела человека как новый диагностический метод начал применяться в медицинской практике с конца 50-х годов и с тех пор нашел широкое применение во многих клиниках мира. Впрочем, еще врачи древней Греции определяли локализацию глубокого расположения опухоли по местам наиболее быстрого высыхания ила, тонким слоем которого смазывали больного.

 

Способы регистрации инфракрасного излучения кожи человека можно разделить на две группы – контактные и дистанционные.

 

Контактная жидкокристаллическая термография проводится с помощью жидких кристаллов. В основе метода лежит способность холестерических кристаллов изменять цвет в зависимости от интенсивности и волнового диапазона инфракрасного излучения поверхности, на которую они нанесены. Контактные термограммы получают путем прикладывания к поверхности тела в исследуемой области пленки или паст с жидкокристаллическим соединением.

 

Пленка из холестерических кристаллов под воздействием инфракрасного излучения кожи окрашивается в разные цвета, причем, участкам с различной температурой соответствуют различные цветовые тона. Полученную цветовую картину исследуют визуально и фотографируют на цветную пленку.

 

Более часто используется бесконтактная (дистанционная) термография.

 

Бесконтактное исследование может быть выполнено как термоскопия (визуализация теплового поля тела или его части на экране тепловизора), термометрия (измерение температуры поверхности тела с помощью градуированной или цветовой шкалы и эталонного излучателя), термография (регистрация теплового поля на фотопленке или электрохимической бумаге в виде монохроматической или цветной термограммы).

 

Для бесконтактной регистрации тепловых (температурных) полей кожных покровов человека используются оптико-электронные приборы – медицинские тепловизоры.

 

Наличие патологического процесса проявляется одним из трех качественных термографических признаков: появлением аномальных зон гипертермии или гипотермии, нарушением нормальной термотопографии сосудистого рисунка, а также изменением такого количественного признака, как градиент температуры в исследуемой зоне.

 

Воспалительные процессы, как правило, обусловливают изменения величин градиента температур между зоной поражения и окружающими тканями: при хроническом воспалительном процессе до 0,7-1º; при остром – до 1-1,5º, при остром гнойно-деструктивном – 1,5-2º.

 

При воспалительных процессах, помимо изменения градиентов температур, на термограммах регистрируется зона гипертермии, по форме, размерам и расположению соответствующая области наиболее выраженных патологических изменений.

 

При злокачественных опухолях и их метастазах в кости и мягкие ткани зона гипертермии на термограммах имеет интенсивное свечение, округлой или неправильной формы, резкие контуры, однородную структуру. Градиент температур зоны гипертермии и симметричной области превышает 2-,25º.

 

При снижении кровотока, связанного с ангиоспазмом или органическим поражением артериальных сосудов появляется зона гипотермии, по форме, размерам и топографии соответствующая области резкого снижения кровотока.

 

Радиотермометрия – измерение температуры внутренних органов и тканей по собственному их излучению. Давно известно, что человек является источником радиоизлучения. Впервые регистрацию этого излучения для медицинской диагностики применили А.Баррет и П.Майерс в 1975 году.

 

При радиотермометрии производят измерение температуры тканей на разной глубине с помощью микроволнового радиометра. Если известна температура кожи в данной области, то можно вычислить температуру на любой глубине. Этого также можно добиться, регистрируя температуру на двух разных длинах волн. Ценность метода подкрепляется тем, что температура глубоко расположенных тканей, с одной стороны, постоянна, а с другой – почти моментально меняется под влиянием некоторых лекарственных средств, в частности, сосудорасширяющих препаратов. Это дает возможность проводить функциональные исследования, например, при решении вопроса об уровне ампутации при окклюзии сосудов конечностей.

 

В конструкции тепловизоров используются два метода получения тепловых изображений. Приборы, создающие видимое изображение тепловой картины объекта без сканирования, и сканирующие радиометры. В устройствах без сканирования преобразование теплового излучения в видимое осуществляется одновременно по всему полю зрения, тогда как при использовании сканирования преобразование осуществляется последовательно от точки к точке.

 

Итак, инфракрасная термография – способ бесконтактной дистанционной регистрации изображения кожных покровов человека по его собственному спонтанному инфракрасному излучению, обусловленному процессами термогенеза и теплоотдачи тканей в диапазоне электромагнитных волн от 0,76 мкм до 0,1 мм.

 

Наиболее широко в тепловизорах используется одноэлементный приемник из антимонида индия, который охлаждается жидким азотом. Под действием падающего на приемник потока излучения изменяется его электропроводность (электрическое сопротивление), которое измеряется.

 

Термографическое исследование, как абсолютно безвредное, используют только на первом этапе диагностического алгоритма, а также для контроля эффективности лечения тех или иных заболеваний.

 

Проведение осмотров населения в кабинетах термодиагностики должно быть ориентировано на выявление, в первую очередь, следующих групп заболеваний:

1. Злокачественные новообразования: кожи и молочной железы, губы, полости рта и глотки, носа, уха, околоносовых пазух, гортани, мочеполовых органов.

2. Болезни системы кровообращения: флебит и тромбофлебит, облитерирующий атеросклероз.

3. Болезни органов пищеварения: язвенная болезнь желудка и 12 -перстной кишки, гастрит, панкреатит, холецистит.

 

Термография выявляет практически все случаи рецидивов и МТС в лимфатические узлы; МТС в позвоночный столб, ребра, кости таза выявляются в 80% наблюдений обычно за 1-1,5 месяца до их рентгенологического выявления.

Вредность при термографии отсутствует.

 

36.Понятие радиочувствительности. Основные факторы, определяющие радиочувствительность клетки.

 

Радиочувствительность – способность биологических объектов реагировать на действие ионизирующих излучений процессами деструкции и нарушением функций. Наиболее чувствительные к ионизирующему излучению ткани содержат клетки:

1. Находящиеся в момент облучения в процессе активного деления.

2. Проходящие многие трансформации в своем жизненном цикле.

3. Не имеющие четкой специализации по своей структуре и функциям.

 

Исключением являются лимфоцит

ы и ооциты, которые являются высокорадиочувствительными, находясь в интерфазе.

На радиочувствительность существенное влияние оказывает и кислородный эффект. Клетки с нормальным содержанием кислорода значительно чувствительней к действию редкоионизирующего излучения, чем находящиеся в состоянии гипоксии. При падении рО2 ниже 20 мм рт. ст. клетки более устойчивы к действию радиации, чем при более высоком парциальном давлении кислорода. Температура также влияет на радиочувствительность. Понижение температуры тела способно повысить сопротивляемость организма к действию ионизирующего излучения. В некоторых случаях это ведет лишь к отсроченности наступления радиационных последствий. В то же время повышение температуры тканей повышает их радиочувствительность. Определенную роль при этом играет кислород, а также зависимость митоза от температуры.

 

37. Способы модификации радиочувствительности здоровых и злокачественных клеток.

 

Радиочувствительность (До), т.е. наклон кривых выживаемости нормоксических и аноксических клеток на графике зависимости эффекта от дозы различается в 2,5-3,5 раза. Закономерной связи между величиной гипоксической фракции и гистологическим строением опухоли, размером или скоростью роста новообразования установить не удалось. Гипоксические клетки обнаружены и в довольно маленьких опухолях.

 

Здоровые ткани человеческого организма и опухолевая ткань мало различаются по радиочувствительности Успех лучевой терапии зависит от наибольшей концентрации дозы излучения в опухоли и направленного изменения радиочувствительности опухоли и окружающих ее нормальных тканей с помощью различных средств и методов.

 

Существует три независимых направления оптимизации лучевых методов лечения злокачественных опухолей на радиобиологической основе.

1. Использование новой техники и новых видов ионизирующих излучений, рассчитанных на особенности их биологического действия и преимущественную локализацию энергии в опухолевом очаге (в частности, это касается заряженных ядерных частиц).

2. Разработка режимов облучения, учитывающих различия цитокинетических параметров злокачественных и нормальных тканей, а также в механизмах развития непосредственных и отдаленных эффектов облучения.

3. Разработка способов искусственного управления радиочувствительностью здоровых и опухолевых тканей с помощью различных модифицирующих агентов избирательного действия.

 

38. Линейная томография. Принцип. Возможности. Показания. Противопоказания.

 

Линейная томография (классическая томография) — метод рентгенологического исследования, с помощью которого можно производить снимок слоя, лежащего на определённой глубине исследуемого объекта. Данный вид исследования основан на перемещении двух из трёх компонентов (рентгеновская трубка, рентгеновская плёнка, объект исследования). Наиболее близкую к современной линейной томографии систему предложил Маер, в 1914 году он предложил двигать рентгеновскую трубку параллельно телу больного.

 

Наибольшее распространение получил метод съёмки, при котором исследуемый объект оставался неподвижным, а рентгеновская трубка и кассета с плёнкой согласованно перемещались в противоположных направлениях.

 

При синхронном движении трубки и кассеты только необходимый слой получается четким на пленке, потому что только его вклад в общую тень остаётся неподвижным относительно плёнки, всё остальное — смазывается, почти не мешая проводить анализ полученного изображения. В настоящее время доля последнего метода в исследованиях, в мире, уменьшается, в связи со своей относительно малой информативностью.

 

Томограф имеет подвижную трубку, при движении которой возникает динамическая нерезкость (размытие), а чётким остается изображение только на определенном расстоянии от поверхности кассеты с пленкой. Всё, что находится выше и ниже, «размазывается», что позволяет сделать относительно четкое изображение тканей на определённой глубине.

 

Данный метод является дополнительным методом рентгенологического обследования и направлен главным образом на уточнение локализации и структуры объемных образований в ткани легких.

 

Томографическое исследование помогает определит структуру, точную локализацию и протяженность патологического процесса; Изучить состояние трахеобранхиального дерева, включая сегментарные бронхи; уточнить характер поражения лимфатических узлов корней и средостения.

 

39. Профилактическая флюорография. Принцип. Возможности. Показания.

 

Флюорография – способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на пленку фотоаппаратом. Наибольший удельный вклад в формирование популяционной дозы вносит массовая профилактическая флюорография органов грудной клетки, от которой, именно по этой причине, во всем мире давно отказались.

 

Флюорография (синонимы: радиофотография, рентгенофотография, рентгенофлюорография) — рентгенологическое исследование, заключающееся в фотографировании флюоресцентного экрана, на который спроецировано рентгенологическое изображение. Выделяют мелкокадровую (например, 24/24 мм или 35/35 мм) и крупнокадровую (в частности, 70/70 мм или 100/100 мм) методики. Последняя по диагностическим возможностям приближается к рентгенографии. Флюорография применяют главным образом для исследования органов грудной клетки, молочных желёз, костной системы. Наиболее распространённым диагностическим методом, использующим принцип флюорографии, является флюорография органов грудной клетки, которая применяется прежде всего для скрининга туберкулеза и злокачественных новообразований лёгких. Также в медицинской диагностике флюорография используется для изучения молочных желёз и костной системы. Разработаны как стационарные, так и мобильные флюорографические аппараты.

 

В настоящее время плёночная флюорография постепенно заменяется цифровой. Цифровые методы позволяют упростить работу с изображением (изображение может быть выведено на экран монитора или распечатано, может быть передано по локальной сети сразу нескольким врачам и т. п.), уменьшить лучевую нагрузку на пациента и уменьшить расходы на дополнительные материалы (плёнку, проявитель для плёнки). Существует две распространённые методики цифровой флюорографии. Первая методика, как и обычная флюорография, использует фотографирование изображения на флуоресцентном экране, только вместо рентген-плёнки используется ПЗС-матрица. Вторая методика использует послойное поперечное сканирование грудной клетки веерообразным пучком рентгеновского излучения с детектированием прошедшего излучения линейным детектором (аналогично обычному сканеру для бумажных документов, где линейный детектор перемещается вдоль листа бумаги). Второй способ позволяет использовать гораздо меньшие дозы излучения. Некоторый недостаток второго способа — большее время получения изображения.

 

40. Дистанционная гамма-терапия. Принцип. Возможности. Показания.

 

Гамма-терапия — лучевая терапия гамма-излучением радиоактивных изотопов (60Со, 137Cs, 226Ra, 182Ta, 192Ir и др.); применяется при лечении злокачественных, реже — доброкачественных опухолей. Основной задачей при гамма-терапии является создание таких условий облучения, при которых достигается или непосредственное разрушение опухолевых клеток, или стойкое прекращение размножения облученных клеток с обязательным сохранением ре

генераторной способности окружающих нормальных тканей.

В зависимости от локализации, распространения и гистологического строения опухоли могут быть применены контактные методы, при которых радиоактивные препараты (см.) непосредственно соприкасаются с тканями или находятся от них на расстоянии не более 1—2 см, и дистанционные методы, при которых облучение производится с расстояния от 6 см до 1 м.

 

Контактные методы.

 

Гамма-терапия аппликационная- метод, при котором радиоактивные препараты, расположенные в определенном порядке на аппликаторе, образуют излучающую поверхность. Аппликационный метод показан при лечении рака кожи, губ, кавернозных ангиом и других опухолей, инфильтрирующих ткани на глубину не более 1 —1,5 см.

 

Гамма-терапия внутритканевая— метод,- при котором радиоактивные препараты с линейной плотностью 0,3—1 мк на 1 см вводят в опухоль и непосредственно прилегающие нормальные ткани. Внутритканевой метод показан при лечении ограниченных дифференцированных опухолей диаметром не более 5 см при раке кожи, лица, века, губы, языка, заднего прохода, рецидивах рака после лучевого и хирургического лечения.

 

Гамма-терапия внутриполостная — метод, при котором радиоактивные препараты цилиндрической или шаровидной формы вводят в пораженную полость в резиновых зондах, баллонах или специальных аппликаторах. Применяется при лечении рака пищевода, носоглотки, шейки и тела матки, мочевого пузыря и прямой кишки. Как самостоятельный метод применяется при поражении только слизистой оболочки. Во всех остальных случаях сочетается с дистанционным облучением.

 

Гамма-терапия дистанционная — метод облучения с расстояния одним источником большой активности при помощи гамма-аппаратов. Метод показан при лечении глубоко расположенных опухолей.

 

41. Контактные методы лучевой терапии. Принцип. Возможности. Показания. Противопоказания.

 

Контактные методы лучевой терапии Контактные методы облучения - это такие методики ЛТ, при которых источник ИИ находится на расстоянии менее 30 см от облучаемого объекта. Различают следующие виды контактной ЛТ:

1. аппликационная ЛТ;

2. внутриполостное облучение;

3. внутритканевая ЛТ.

 

При аппликационной ЛТ источники ИИ помещаются непосредственно на поверхности тела больного без нарушения целостности тканей (лечение поверхностно расположенных новообразований: рак кожи, губы, рецидивы рака молочной железы и др.). Аппликационная ЛТ выполняется в течение 5-10 дней, причем ежедневные процедуры проводятся в течение нескольких часов.

 

Внутриполостное облучение производят путем введения источника излучения в естественные (полость рта, матки; пищевод, прямая кишка) или искусственно образованные (послеоперационная рана и др.) полости. Внутритканевая ЛТ. Помимо введения закрытых радиоактивных источников в полости тела больного можно вводить непосредственно в опухоли или размещать на поверхностях опухолей иглы, гранулы, проволоки, содержащие радиоактивные источники. При внутритканевой ЛТ источник излучения находится в опухоли или в тканях организма больного в течение всего процесса лечения. При внутреннем облучении

 

перорально, внутримышечно или внутривенно вводятся органотропные радионуклиды или меченые соединения, которые избирательно поглощаются опухолью или другими патологически измененными тканями.

 

Близкофокусная рентгенотерапия. К основным особенностям близкофокусной рентгенотерапии (БФР) относятся: генерирование излучения при напряжении не более 100 кВ, малое кожно-фокусное расстояние (до 7,5 см), небольшие поля облучения (до 25 см2). В настоящее время БФР находит широкое применение как самостоятельный метод лечения доброкачественных и злокачественных опухолей кожи (кератоакантомы, ангиомы, рак, и др.) и, реже, как составная часть комбинированного лечения опухолей полостных органов (рак полости рта, прямой кишки и др.)

 

Противопоказания к БФР:

1. Глубокие поражения кожи (рак на рубцах после ожога, волчанки, сифилиса, рецидив рака кожи после лучевой терапии).

2. Поражение глубже 12 мм, здесь предпочтительнее дистанционные методы облучения.

 

42. Комбинированная лучевая терапия. Принцип. Возможности. Показания. Противопоказания.

 

При некоторых злокачественных новообразованиях оптимальное лечение заключается в сочетании хирургической операции, лучевой терапии и химиотерапии. Хирургическая операция или лучевая терапия оказывают местное воздействие на злокачественную опухоль, в то время как химиотерапия уничтожает злокачественные клетки, которые распространились за пределы первичного местоположения опухоли. Иногда лучевая или химиотерапия назначаются перед операцией, чтобы уменьшить величину опухоли, или после операции, чтобы разрушить оставшиеся злокачественные клетки. Проведение химиотерапии наряду с хирургической операцией повышает вероятность выживания у людей со злокачественными опухолями толстой кишки, молочной железы и мочевого пузыря, которые дали метастазы в близлежащие лимфатические узлы. Операция и химиотерапия иногда позволяют излечить далеко зашедший рак яичников. Злокачественная опухоль прямой кишки успешно лечится химиотерапией и лучевой терапией. На поздней стадии злокачественных опухолей толстой кишки химиотерапия, применяемая после хирургической операции, может продлевать безрецидивный период. Приблизительно 20-40% злокачественных опухолей головы и шеи вылечиваются химиотерапией, сопровождаемой лучевой терапией или хирургической операцией. Если излечения добиться не удается, эти виды лечения тем не менее могут уменьшить симптомы (паллиативная терапия).

 

Хирургическая операция, облучение и химиотерапия играют определенную роль в лечении опухоли Вильмса и эмбриональных рабдомиосарком. При опухоли Вильмса (раке почки, развивающемся в детском возрасте) цель операции состоит в том, чтобы удалить первичную злокачественную опухоль, даже если злокачественные клетки уже распространились в другие органы. Химиотерапию начинают во время операции, а лучевую терапию проводят позднее, чтобы воздействовать на остатки опухоли.

К сожалению, такие опухоли, как, например, рак желудка, поджелудочной железы или почек, лишь частично поддаются воздействию облучения, химиотерапии или их комбинации. Однако эти виды терапии могут уменьшать боль от сдавления или ослаблять симптомы, которые развиваются при прорастании опухоли в окружающие ткани. Некоторые резистентные к терапии злокачественные новообразования (например, немелкоклеточный рак легкого, рак желудка, поджелудочной железы, почек) все же подвергаются лечению, для того чтобы увеличить время выживания больного. Прогресс в терапевтическом лечении злокачественных образований связан с разработкой лучших сочетаний лекарственных препаратов, изменением их дозировок и оптимизацией лучевой терапии. Побочные эффекты лечения

 

Почти каждый больной, подвергающийся воздействию химиотерапии или лучевой терапии, испытывает некоторые побочные эффекты — обычно это тошнота, рвота и уменьшение количества клеток крови. Люди, получающие химиотерапию, часто теряют волосы. Уменьшение числа побочных эффектов — важный аспект совершенствования терапевтического лечения.

 

43. Комплексная лучевая терапия. Принцип. Возможности. Показания. Противопоказания.

 

Использование лучевой терапии как компонента комплексного лечения. Предварительное хирургическое удаление основной массы опухоли позволяет уменьшить суммарную общую дозу облучения и получить лучшие результаты лечения, так как в объемных новообразованиях присутствует большее количество радиорезистентных клеток. После проведения хирургической операции мы рекомендуем начинать лучевую терапию не ранее 7 -10-ого дня, так как ионизирующие излучение неблагоприятно влияет на заживление операционной раны. При не операбельных новообразованиях предоперационная лучевая терапия позволяет уменьшить объем опухоли и перевести её в разряд операбельных. Эффект действия ионизирующего излучения на опухоль сохраняется ещё в течение 3-5 недель после окончания сеансов лучевой терапии.

 

Использование радиомодификаторов совместно с лучевой терапией позволяет усилить терапевтический эффект облучения. Однако возрастает опасность лучевых повреждений здоровых тканей.

 

Осложнения при проведении курса лучевой терапии связаны с двумя причинами. Во-первых, это действие, ионизирующего излучения на здоровые ткани и во– вторых, факторы, связанные с организацией процесса облучения. При облучении опухоли ионизирующие излучение действует и на окружающие опухоли ткани организма, что приводит к возникновению лучевых повреждений. Различают общие и местные реакции. Общие реакции проявляются в основном при облучении новообразований внутренних органов и зависят от размера и локализации опухоли. При облучении поверхностно расположенных опухолей встречаются местные реакции окружающих тканей на излучение. Их делят на ранние и поздние лучевые повреждения нормальных тканей. Ранние лучевые

повреждения возникают в течение 3-х месяцев после облучения. В основном повреждения затрагивают кожу и слизистую оболочку. В зависимости от дозы лучевые поражения проявляются в виде эритемы, дерматитов, аллопеций, язв и некрозов.

 

При использовании близкофокусной рентгентерапии основная энергия излучения приходится на поверхность кожи, тем самым, вызывая её лучевые повреждения.

 

Кроме того, костная ткань поглощает больше радиации чем мягкие ткани, что увеличивает риск её некротических повреждений. Поэтому мы используем рентгенотерапевтические аппараты только при поверхностных новообразованиях.

 

Брахитерапия дает значительные преимущества при локализации опухоли в полостях тела (носовая, ротовая, влагалище и шейка матки). Однако максимальная доза ионизирующего излучения находится на расстоянии не более 1,5 см от источника. Поэтому он должен располагаться как можно ближе к опухолевой ткани, иначе доза облучения будет недостаточной для уничтожения всех опухолевых клеток.

 

44. Радикальная, паллиативная, симптоматическая лучевая терапия.

 

Радикальная терапия - излечение (ИИ действует на первичную опухоль и на предполагаемые зоны лимфогенного метастазирования).

 

Паллиативная терапия - продление жизни (приостановить рост опухоли, уменьшить ее размеры).

 

Симптоматическая терапия - устранение отдельных симптомов, отягощающих состояние больного (боль, синдром сдавления верхней полой вены и др.).ЛТ злокачественных опухолей может применяться как самостоятельный метод лечения или являться одним из этапов комбинированного воздействия. Возможна комбинация облучения с операцией, химио- и гормонотерапией. Сочетанная ЛТ - сочетание двух и более методов ЛТ (дистанционная ?-терапия + внутриполостная терапия и т. п.).

 

Лучевую терапию в комбинации с хирургическим вмешательством используют в трех различных вариантах:

1. Предоперационная ЛТ, т. е. осуществляемая до операции.

 

Задачи:

1. разрушение наиболее радиочувствительных клеток и понижение жизнеспособности оставшихся опухолевых элементов;

2. устранение воспалительных явлений в опухоли и вокруг нее;

3. облитерация мелких сосудов, ведущая к понижению васкуляризации стромы и, следовательно, к уменьшению опасности метастазирования;

4. перевод опухолей, находящихся на грани операбельности, в операбельное состояние.

 

45. Побочные действия контрастных веществ, применяемых в рентгенологии, способы предотвращения их возникновения.

 

Побочное действие РКС. Реакции организма на введение РКС наблюдаются примерно в 10% случаев. По характеру и степени тяжести они делятся на 3 группы:

1. Осложнения, связанные с проявлением токсического действия на различные органы с функциональными и морфологическими поражениями их.

2. Нервно-сосудистая реакция сопровождается субъективными ощущениями (тошнота, ощущение жара, общая слабость). Объективные симптомы при этом – рвота, понижение артериального давления.

3. Индивидуальная непереносимость РКС с характерными симптомами:

3.1. Со стороны центральной нервной системы – головные боли, головокружение, возбуждение, беспокойство, чувство страха, возникновение судорожных припадков, отек головного мозга.

3.2. Кожные реакции – крапивница, экзема, зуд и др.

3.3. Симптомы, связанные с нарушением деятельности сердечно-сосудистой системы – бледность кожных покровов, неприятные ощущения в области сердца, падение артериального давления, пароксизмальная тахи- или брадикардия, коллапс.

3.4. Симптомы, связанные с нарушением дыхания – тахипноэ, диспноэ, приступ бронхиальной астмы, отек гортани, отек легких.

 

Реакции непереносимости РКС иногда носят необратимый характер и приводят к летальному исходу.

Механизмы развития системных реакций во всех случаях имеют сходный характер и обусловлены активацией системы комплемента под воздействием РКС, влиянием РКС на свертывающую систему крови, высвобождения гистамина и других биологически активных веществ, истинной иммунной реакцией или сочетанием этих процессов.

 

В легких случаях побочных реакций достаточно прекратить инъекцию РКС и все явления, как правило, проходят без терапии.

 

При тяжелых осложнениях необходимо немедленно вызвать реанимационную бригаду для профилактики побочного действия РКС накануне проведения рентгеноконтрастного исследования применяют премедикацию антигистаминными и глюкокортикоидными препаратами, а также проводят один из тестов для прогнозирования повышенной чувствительности больного к РКС. Наиболее оптимальными тестами являются: определение высвобождения гистамина из базофилов периферической крови при смешивании ее с РКС; содержания общего комплемента в сыворотке крови больных, назначенных для проведения рентгеноконтрастного обследования; отбор больных для премедикации путем определения уровней сывороточных иммуноглобулинов.

 

Среди более редких осложнений могут иметь место «водное» отравление при ирригоскопии у детей с мегаколон и газовая (либо жировая) эмболия сосудов.

 

Признаком «водного» отравления, когда быстро всасывается через стенки кишки в кровеносное русло большое количество воды и наступает дисбаланс электролитов и белков плазмы, могут быть тахикардия, цианоз, рвота, нарушение дыхания с остановкой сердца; может наступить смерть. Первая помощь при этом – внутривенное введение цельной крови или плазмы. Профилактикой осложнения является проведение ирригоскопии у детей взвесью бария в изотоническом растворе соли, вместо водной взвеси. Признаками эмболии сосудов являются: появление ощущения стеснения в груди, одышка, цианоз, урежение пульса и падение артериального давления, судороги, прекращение дыхания. При этом следует немедленно прекратить введение РКС, уложить больного в положение Тренделенбурга, приступить к искусственному дыханию и непрямому массажу сердца, ввести внутривенно 0,1% - 0,5 мл раствора адреналина и вызвать реанимационную бригаду для возможной интубации трахеи, осуществления аппаратного искусственного дыхания и проведения дальнейших лечебных мероприятий.

 

46. Физические принципы защиты от ионизирующего излучения.

 

Радиационная защита персонала при проведении лучевой терапии. По степени радиационной опасности методы лучевого лечения можно расположить в следующем порядке: внутриполостная терапия с помощью традиционных методов введения радиоактивных препаратов, терапия с помощью шланговых аппаратов и дистанционная терапия.

 

Радиационная защита персонала при проведении дистанционной лучевой терапии зависит, главным образом, от качества стационарной защиты, продолжительности и количества укладок на гамма-аппаратах и системы мероприятий по предупреждению аварийных ситуаций. Помещения для дистанционной лучевой терапии располагаются в отдельных зданиях или в изолированных частях лечебных корпусов. Из зала облучения во время сеанса удаляются все лица, кроме больного. Пульт управления выносится в смежное помещение, и связь с больным во время процедуры облучения поддерживается по телефону и с помощью замкнутой телевизионной системы. Вход в помещение, где находится мегавольтный источник или гамма-аппарат, выполняется в виде лабиринта.

 

С помощью блокировки защитной двери гарантируется невозможность внезапного появления персонала в зоне облучения.

 

В помещениях для дистанционной лучевой терапии запрещено проводить какие-либо работы, не предусмотренные должностной инструкцией и другими нормативными документами, если эти работы не направлены на предотвращение аварий и других обстоятельств, угрожающих здоровью работающих и нормальной работе учреждения.

 

Перезарядка гамма-терапевтических аппаратов должна производиться только специализированными организациями, имеющими разрешение СЭС на проведение этих работ.

 

При контактной лучевой терапии радиационная опасность для персонала заключается во внешнем облучении потоками гамма-квантов и бета-частиц (аппликаторы), что возможно на всех этапах работы с источниками. Радиационная безопасность при работе с закрытыми источниками гамма-бета-излучения реализуется двумя параллельными путями: применением защитных экранов, смотровых окон, дистанционных инструментов и правильной организацией работы, обеспечивающей минимальные затраты времени на проведение каждого этапа. Оба пути тесно связаны друг с другом и зависят от технологической схемы подготовки и проведения лечебной процедуры. При ручном выполнении все манипуляции, связанные с проведением контактной терапии, являются радиационно опасными. Для защиты персонала, осуществляющего аппликационную бета-терапию, применяются комбинированные экраны из легких (оргстекло, алюминий) и тяжелых (железо, свинец) материалов. Легкие материалы поглощают потоки бета-частиц, а возникающее при этом тормозное излучение ослабляется в тяжелых материалах второго слоя. Помимо применения комбинированных экранов, рекомендуется использовать защитные перчатки, дистанционные инструменты и защитные очки.

 

47. Постлучевые процессы при фракционированном облучении.

 

Теоретически всегда возможно полностью уничтожить опухоль, однако этот эффект обычно лимитируется возможностью повреждения окружающих нормальных органов и тканей, которые могут быть облучены только до известных пределов. Можно сказать, что нижний предел подводимой дозы определяется радиочувствительностью опухоли, а верхний предел - толерантностью окружающих тканей.

Лучевые осложнения - это осложнения, возникающие в результате ЛТ со стороны органов и систем. Характер и особенности клинического проявления лучевых осложнений зависят от индивидуальной радиочувствительности и возраста больного, наличия сопутствующей патологии (сахарный диабет и т. п.), вида излучения, разовой и суммарной очаговой дозы, объема облучения, режима фракционирования, мощности дозы. Принято выделять 2 вида лучевых осложнений:

1. Лучевые реакции - изменения (функциональные или морфологические), возникающие в процессе ЛТ, носящие обратимый характер (в последующие 2-3 недели после облучения проходят без специального лечения).

2. Лучевые повреждения - функциональные и морфологические изменения органов и тканей, которые носят необратимый характер и требуют специального лечения.

3.

Лучевые повреждения делятся на ранние (развившиеся в первые 3 месяца после облучения) и поздние (развившиеся позже). При ранних лучевых повреждениях всегда страдают более радиочувствительные и хорошо регенерирующие структуры. Поэтому они сравнительно легко восстанавливаются. При поздних лучевых повреждениях могут страдать более радиорезистентные структуры. В основе этих лучевых повреждений лежат цитолиз, изменения на уровне мелких сосудов, что приводит к нарушениям микроциркуляции и развитию гипоксии облученных тканей, следствием чего является их фиброз и склероз.

 

Лучевые реакции и повреждения могут быть местными и общими.

 

Общие лучевые реакции - реакции всего организма на воздействия ИИ - проявляются повышением температуры, нарушением функции желудочно-кишечного тракта, сердечно-сосудистой, кроветворной, эндокринной и нервной систем.

 

Местные лучевые реакции характеризуются развитием изменений непосредственно в зоне облучения. Изменения кожи:

1. Эритема - гиперемия кожи в зоне облучения, сопровождается отечностью, зудом. В дальнейшем переходит в пигментацию, через 2-3 недели выпадают волосы. Спустя некоторое время все клинические проявления исчезают. Наибольшей радиочувствительностью обладает кожа подмышечных впадин, локтевого сгиба, паховых складок, век.

2. Сухой эпидермит - мелкое шелушение эпидермиса на фоне гиперемии с умеренным отеком кожи.

3. Влажный эпидермит - образование мелких пузырьков с серозным и серозно-гнойным содержимым на фоне гиперемии и отечности облученной кожи. После вскрытия пузырьков и отторжения эпидермиса остается мокнущая красная поверхность с небольшим количеством отделяемого.

4. Основной причиной развития поздних лучевых повреждений кожи является погрешность в планировании и проведении ЛТ, когда применяются суммарные поглощенные дозы, превышающие толерантность тканей.

5. Атрофические и гипертрофические дерматозы - истончение и сухость кожи, появление островков гиперкератоза, трещин, поверхностных эрозий.

6. Лучевой фиброз кожи и подкожной жировой клетчатки - возникает через 4-6 месяцев после облучения.

7. Поздняя лучевая язва - образуется в центре атрофического или гипертрофического дерматита.

 

48. Источники электромагнитных ионизирующих излучений для лучевой терапии.

 

Ионизирующие излучения принято делить на излучения электромагнитной природы и корпускулярное. К электромагнитным относятся рентгеновское излучение и гамма-излучение. Это потоки квантов, не имеющих заряда, энергия которых определяется их частотой или длиной волны. Скорость распространения в вакууме обоих видов излучений равна скорости света. Источниками излучений электромагнитной и корпускулярной природы являются радиоактивные изотопы и аппараты — генераторы различного рода ионизирующих излучений. В настоящее время при лучевой терапии больных злокачественными опухолями применяют различные аппараты — источники излучения. Среди них наибольшее распространение получили гамма-установки. Для гамма-установок могут быть использованы различные изотопы, однако преимущества имеют изотопы с большим периодом полураспада, гомогенным излучением, большой энергией и большой удельной активностью. Отечественная промышленность выпускает различные конструкции гамма-установок. Радиационная головка перемещается в вертикальном направлении на 140 см, вокруг горизонтальной оси на ±180° (вместе с вилкой), а также в вилке к штативу на 45° и от штатива на 90°. Аппарат снабжен комплектом решеток, клиньев и блоков для формирования пучка излучения.

 

49. Источники корпускулярных ионизирующих излучений для лучевой терапии.

 

Ионизирующие излучения принято делить на излучения электромагнитной природы и корпускулярное. К электромагнитным относятся рентгеновское излучение и гамма-излучение. Это потоки квантов, не имеющих заряда, энергия которых определяется их частотой или длиной волны. Скорость распространения в вакууме обоих видов излучений равна скорости света. Источником электронного излучения являются линейные ускорители. Получаемый поток электронов ускоряется дополнительным электрическим полем до очень больших скоростей, приближающихся к скорости света. Другие виды корпускулярного излучения — пучки ускоренных протонов, дейтронов и альфа-частиц — получают путем ионизации нейтральных газов и ускорения частиц с помощью ускорительных установок. В настоящее время протонное излучение применяют в клинике. Первичный пучок протонов имеет сечение малого размера, и поэтому в первые годы этот вид излучения применялся только для облучения опухолей, не превышающих 2 см в диаметре, например опухолей гипофиза. В последние годы получена возможность увеличивать диаметр пучка, что позволяет облучать поля размером от 4х4 до 20х20 см. Протонный пучок характеризуется малым краевым рассеянием. Мощность дозы по краям большего поля падает до 50% мощности в центре поля. Пучок протонов с энергией до 200 МэВ и мощностью лозы в несколько тысяч рад в минуту получен на протонном синхротроне ИТЭФ и используется при лечении больных с различными формами злокачественных опухолей.

 

Нейтроны — элементарные частицы атомного ядра, электрически нейтральны, с массовым числом, равным единице. Нейтрон нестабилен и распадается на протон, электрон и нейтрино; возможен и обратный процесс — превращение протона, электрона и нейтрино в нейтрон. Нейтроны в свободном виде в природе не встречаются. В течение последних десятилетий разрабатываются различные методы применения нейтронов в клинике.

 

50. Дозиметрическая оценка поглощения энергии излучения в теле человека при тормозном излучении высоких энергий.

 

Терапия тормозным излучением ускорителей. В основном используются линейные ускорители, которые генерируют тормозное излучение с энергией от 4 до 42 МэВ. С возрастанием энергии излучения заметно увеличивается проникающая способность лучей и, соответственно, относительная глубинная доза. Кожная доза при использовании тормозного излучения с энергией 4- 42 МэВ составляет от 20 до 30% максимальной, т.е. существенно меньше, чем при гамма-терапии, а зона дозного максимума перемещается на глубину 1 см при энергии 4 МэВ и 4-5 см – при 25-42 МэВ. На глубине 10 см доза составляет 60-90% максимальной. Важной характеристикой тормозного излучения является почти полное отсутствие рассеянного излучения. Весь поперечник пучка несет почти одинаковую энергию. На практике это означает возможность применения более узких пучков (чем при гамма-излучении), уменьшение облучения соседних с опухолью тканей и, соответственно, уменьшению интегральной дозы.

 

51. Дозиметрическая оценка поглощения энергии излучения в теле человека при телегамматерапии (60 Со).

 

Гамма-излучение возникает при возбуждении ядра при бета-распаде некоторых радиоактивных веществ, при захвате нейтрона, при соединении позитрона с электроном, а также при явлении внутренней конверсии. Энергия гамма-излучения различных изотопов различна и варьирует от 0,1 до 2,6 МэВ. Проникающая способность гамма-излучения большей энергии очень велика, оно полностью поглощается свинцом толщиной 15 см. Прохождение гамма-лучей через вещество сопровождается ослаблением их интенсивности и переходом энергии излучения в другие формы энергии. Излучения радиоактивных изотопов могут быть использованы как для наружного облучения, когда источник излучения находится на определенном расстоянии от облучаемого объекта, так и для внутреннего, когда изотопы вводятся внутрь организма и участвуют в его обмене веществ. Для наружного облучения применяют гамма-, бета- и альфа-излучающие изотопы, а для внутреннего — изотопы со смешанным (бета- и гамма-) излучением или только бета-излучением. При выборе радиоактивных веществ для наружного облучения предпочтение отдают изотопам с длительным периодом полураспада, излучение которых имеет достаточно большую энергию и узкий спектр (монохроматичное). Для лечебных целей чаще всего требуется локальное и строго дозируемое воздействие ионизирующими излучениями, что может быть обеспечено применением одного рода излучений примерно одинаковых энергий. В то же время распад большинства радиоактивных веществ сопровождается испусканием двух, а иногда трех видов излучений с весьма широким спектром. Возможность использований таких радиоактивных веществ обеспечивается применением фильтра, который поглощает ненужное излучение малой энергии, пропуская излучение больших энергий и делая его более гомогенным. Для фильтрации гамма-излучения требуются фильтры из металлов большой относительной атомной массы (атомного веса), таких, как платина, золото, свинец. Фильтры для бета-излучающих изотопов могут приготовляться из металлов малой относительной атомной массы. Радиоактивный кобальт (6027Со, Т = 5,3 года) получают при воздействии нейтронами в реакторе или циклотроне на изотоп кобальта 56Со. Распад сопровождается испусканием бета-частиц с энергией 0,31 МэВ и гамма-излучением с энергией 1,1 и 1,3 МэВ. 60Со — твердый, хрупкий элемент с точкой плавления 1480°С и плотностью, равной 8,9. Для медицинских целей применяют сплав кобальта с 55% никеля (кобаник), который изготавливают в виде негнущейся твердой проволоки различных диаметров. Сплав химически инертен и способен намагничиваться, что упрощает работу с ним. 60Со при распаде не образует газообразных продуктов.

 

52. Дозиметрическая оценка поглощения энергии излучения в теле человека при лучевой терапии быстрыми электронами.

 

Электронная терапия. Энергия электронов поглощается в тканях относительно равномерно на всем протяжении пробега этих частиц. Это означает, что весь слой тканей от кожи до зоны, в которой завершается поглощение моноэнергетического пучка электронов, облучается почти равномерно, а за пределами этой зоны наступает крутое падение дозы. Описанная закономерность не сохраняется у электронов с энергией свыше 10-15 МэВ, т.к. возникает квантовое излучение при торможении этих электронов в тканях. Дозиметрическая характеристика электронов высокой энергии указывает на целесообразность их применения при расположении патологического очага не глубже 5-7 см.

 

53. Дозиметрическая оценка поглощения энергии излучения в теле человека при лучевой терапии плотноионизирующими излучениями.

 

Терапия протонами, пи-мезонами и альфа-частицами. Энергия протонов, пи-мезонов и альфа-частиц относительно равномерно поглощается на всем пути их пробега, кроме заключительного короткого участка, на котором значительно выше линейная потеря энергии, и происходит поглощение всей остаточной энергии частиц. В результате пик поглощения энергии вышеуказанных тяжелых частиц располагается в конце пути (пик Брегга). Глубину положения этого пика можно менять, увеличивая или уменьшая энергию частиц, а при неизменной энергии – используя в процессе лечения болюсы – поглотители (слои тканеэквивалентного материала), которые прикладывают к облучаемой поверхности при излишне большой проникающей способности частиц. Доза на коже при протонном облучении составляет около 30% максимальной, а при пи-мезонном облучении она еще меньше – приблизительно 15-20%.

 

54. Дистанционная лучевая терапия. Принцип. Способы дистанционного облучения.

 

Дистанционная ЛТ может проводиться в статическом и подвижном режимах. При статическом облучении источник неподвижен по отношению к больному. ( ротационно – маятниковое или секторное тангенциальное, ротационно – конвергентное и ротационное с управляемой скоростью). Облучение может осуществляться через 1 поле или быть многопольным. При этом возможны варианты встречных или перекрёстных полей и др. Облучение может проводиться открытым пучком или с использованием различных формирующих устройств – защитных блоков, клиновидных и выравнивающих фильтров, решётчатой диафрагмы.. Дистанционная статическая терапия злокачественных опухолей квантовыми излучениями проводится чаще всего посредством многопольного перекрестного облучения. При этом на опухоль направляется несколько пучков лучей (2-3-4) через различные участки кожи, так называемые входные поля. В условиях многопольного облучения для составления плана лечения и расчета топографодозиметрической карты больного особенно большой интерес представляют следующие вопросы: а) влияние размеров полей на величину и конфигурацию дозного максимума; б) зависимость суммации энергии и формирования дозового максимума от угла между пучками лучей; в) выбор направления центральных осей пучков и выбор точки их перекреста на топографоанатомической карте. Изменение размеров полей в условиях многопольного облучения ведет к пропорциональному изменению площади на топометрической схеме и, соответственно, объема тканей, занимаемого 80-100% изодозами. Поэтому увеличение размеров полей облучения является одним из действенных путей увеличения зоны и области перекреста пучков путей.

 

55. Показания к лучевой терапии злокачественных опухолей.

 

Показания к лучевой терапии злокачественных опухолей. В настоящее время показания к лучевому лечению злокачественных опухолей достаточно широки – 65-70% онкологических больных как в неоперабельной, так и в операбельной стадиях заболевания подлежат такому лечению. Показания к лучевой терапии определяются на основании всесторонней оценки состояния органов и систем больного и характеристики выявленного опухолевого поражения. Поэтому с помощью клинических, лучевых, инструментальных и лабораторных методов определяют состояние органов и систем больного, локализацию и характер роста опухолей, стадию ее развития. Там, где это возможно, стадию устанавливают по системе TNM, где Т – параметры опухоли, N – наличие или отсутствие вовлечения лимфоузлов, а М – наличие или отсутствие отдаленных метастазов. Требуется морфологическое подтверждение клинического диагноза посредством биопсии, цитологического изучения пунктатов или смывов. Главной стратегической основой успешности хирургического, лучевого и медикаментозного лечения является ранняя диагностика опухолевого процесса. В онкологической клинике применяют три основных (специальных) варианта лечения больного: хирургический, лучевой и химиотерапевтический. План лечения определяется консилиумом в составе: хирурга (онколога), лучевого терапевта и химиотерапевта, а также других специалистов в зависимости от клинической ситуации.

 

56. Показания к лучевой терапии неопухолевых заболеваний.

 

Лучевая терапия показана в случаях, когда имеется резистентность к другим видам лечения или же она имеет явные преимущества перед другими видами лечения ( хороший косметический эффект при заживлении, лёгкая переносимость, локальность воздействия ).

 

Показания ЛТ неопухолевых заболеваний:<




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.