Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Генетический код. Экспрессия генов и ее этапы. Различия между строением генов у прокариот и эукариот



Есть всего четыре различных основания - А, Т, Г, Ц, а в состав белков входят 20 различных аминокислот. Если бы одно основание определяло положение одной аминокислоты в первичной структуре какого-то белка, то в состав этого белка могло бы входить только четыре вида аминокислот. Если бы каждая аминокислота кодировалась двумя основаниями, то число возможных пар составляло бы 42 = 16. Этого также недостаточно для кодирования 20 аминокислот. Только код, состоящий из трех оснований, мог бы обеспечить включение всех 20 аминокислот в состав белка, поскольку число возможных триплетов здесь 43 = 64. Таким образом, каждой аминокислоте должно соответствовать три последовательных основания ДНК.
Эта зависимость между основаниями и аминокислотами известна под названием генетического кода. Доказательства триплетности кода были получены в 1961 г. Фрэнсисом Криком.

Основные особенности генетического кода могут быть сформулированы следующим образом:

1. Аминокислота кодируется триплетом оснований в полинуклеотидной цепи ДНК.

2. Код является универсальным. У всех живых организмов одни и те же триплеты кодируют одни и те же аминокислоты.

3. Аминокислота может кодироваться более чем одним триплетом (напомним, что число возможных триплетов 64, а число аминокислот 20).

4. Код неперекрывающийся, то есть каждое основание может принадлежать только одному триплету

Механизм синтеза белков в клетке считывает последовательность оснований в одной половине молекулы ДНК группами по три и затем каждую "тройку" оснований переводит в конкретную аминокислоту и в конкретный белок. Механизм синтеза белка в клетке чрезвычайно сложен. Он предполагает участие другого вида нуклеиновых кислот - рибонуклеиновой кислоты (РНК) и ряда клеточных структур вне ядра клетки.
Расшифровка генетического кода была осуществлена в работе с низшими доядерными организмами (прокариотами). Современные молекулярно-генетические исследования, ведущиеся на объектах более высокого уровня организации (эукариотах), показали, что строение гена и принцип считывания информации для синтеза белка у эукариот отличается от такового прокариот. Оказалось, что гены эукариот содержат как кодирующие участки, которые несут информацию для синтеза специфического белка (они были названы экзонами), так и некодирующие (названные интронами). Например, молекула белка овальбумина состоит из 386 аминокислот. При триплетном коде на каждую аминокислоту должно приходиться по три нуклеотида, соответственно ген овальбумина должен был бы состоять из 1158 нуклеотидов. На самом деле ген овальбумина примерно в семь раз длиннее - 7900 нуклеотидов.
Благодаря существованию интронов, гены эукариот могут нести информацию для кодирования не только одного специфического белка, как у прокариот, но, в зависимости от специфики ткани, в которой они функционируют, результатом их деятельности может быть синтез разных белков. В последнем случае информация, закодированная в данном гене, считывается при участии клеточного механизма, который носит название сплайсинга

12. Наследственность и среда. Генотип и фенотип. Геном, генофонд. Гены в популяциях. Закон Харди-Вайнберга.

Генотип- Вся совокупность генов данного организма . Свой генотип (набор генов) каждый человек получает в момент зачатия и несет его без всяких изменений через всю свою жизнь. Активность генов может меняться, но их состав остается неизменным.

Фенотип -любые проявления организма в каждый момент его жизни. Фенотип включает в себя и внешний вид, и внутреннее строение, и физиологические реакции, и любые формы поведения, наблюдаемые в текущий момент. Например, уже упоминавшиеся группы крови системы АВ0 - это пример фенотипа на физиолого-биохимическом уровне. Хотя на первый взгляд многим кажется, что группа крови - это генотип, поскольку она четко определяется действием генов и не зависит от среды, однако это лишь проявление действия генов, и поэтому должно быть отнесено к категории фенотипов. Вспомним, что представители групп крови А или В могут иметь разные генотипы (гомозиготные и гетерозиготные). Сложными фенотипами являются все поведенческие проявления. Например, почерк, который отличает данного индивида, является его поведенческим проявлением и также относится к категории фенотипов. Если группа крови в течение жизни не меняется, то почерк по мере тренировки навыка письма претерпевает значительные изменения.
Если генотипы наследуются и остаются неизменными в течение жизни индивида, фенотипы большей частью не наследуются - они развиваются и являются следствием наших генотипов лишь в определенной мере, поскольку большую роль в становлении фенотипов играют условия внешней среды.

Весь процесс развития от оплодотворенной яйцеклетки до взрослого организма происходит не только под непрерывным регулирующим влиянием генотипа, но и под влиянием множества различных условий среды, в которых находится растущий организм. Поэтому необычайная изменчивость, свойственная живым организмам, обусловлена не только огромным разнообразием генотипов, возникающим вследствие рекомбинации генов и мутационного процесса, но в значительной степени объясняется и тем, что отдельные индивиды развиваются в различающихся условиях среды.
С давних пор идет полемика о том, что важнее для формирования организма - среда или генетическая конституция. генетиков поведения часто упрекают в отрицании роли среды. Однако такой упрек совершенно необоснован. Одним из основных постулатов генетики является тезис о том, что фенотип представляет собой результат взаимодействия генотипа и среды. В процессе этого взаимодействия и возникает то многообразие фенотипических проявлений, которое характерно для большинства признаков человека, относящихся к категории количественных и образующих непрерывный ряд изменчивости.

Формулировка закона Харди-Вайнберга заключается в следующем:

1. При определенных условиях (замкнутость популяции, отсутствие отбора и случайность слияния гамет) частоты аллей сохраняются из поколения в поколение.

2. Частоты встречаемости гомо- и гетерозигот устанавливаются за одно поколение и соответствуют отношению p2: 2pq : q2.

Вопрос 13.

Непрерывная, или количественная, изменчивость, предполагает существование непрерывного ряда переходов от минимальной выраженности признака до максимальной.

Любой количественный признак можно измерять с разной точностью, в зависимости от поставленной задачи и того измерительного инструмента, которым исследователь располагает.

Все требования к психологическим измерениям в генетике поведения остаются теми же, которым должны удовлетворять психодиагностические процедуры - надежность, валидность, репрезентативность.

После того как выбран психологический конструкт, с которым работает исследователь, выбраны методы измерения и спланирована выборка исследования, можно приступать к реальным измерениям. Что мы получим в результате? Конечно же, тот самый ряд непрерывной изменчивости, о котором мы говорили ранее. Этот ряд можно представить в виде распределения частот встречаемости различных величин изучавшегося признака.

Существуют три меры центральной тенденции, характеризующие любое распределение. Их не следует смешивать, поскольку получаемые с их помощью оценки могут и не совпадать (рис. 4.3). Первая - это мода, или наиболее часто встречающееся значение признака. Мода соответствует вершине распределения. Вторая характеристика - медиана - представляет собой такое значение, выше и ниже которого располагаются результаты 50% людей. И, наконец, наиболее часто используемая и известная всем характеристика - это среднее, то есть среднее арифметическое, определяемое путем суммирования всех значений измерявшегося признака и деления полученной суммы на число обследованных. Для некоторых распределений мода, медиана и среднее различаются, для некоторых - совпадают (это так называемое нормальное распределение). Если распределение асимметрично, т.е. имеет длинный "хвост" с одной стороны, мода, медиана и среднее будут значительно отличаться.

Для характеристики разброса значений вокруг среднего чаще всего пользуются показателем дисперсии. Дисперсия представляет собой среднее арифметическое квадратов разностей между наблюдаемыми значениями и средней величиной:

Если многие значения сильно отличаются от среднего, дисперсия будет высокой, а распределение растянутым. Если же значения признака у обследованных индивидов группируются вблизи средней величины, то дисперсия будет низкой. Для описания разброса можно пользоваться и другой характеристикой - стандартным отклонением, величина которого равна корню квадратному из дисперсии.

 

Вопрос 14.

Все попытки проанализировать наследование количественных признаков (высота стебля у растений, размеры листьев, длина колоса и т.п.) наталкивались на множество затруднений, главным из которых была невозможность различить разные категории потомства. Дело в том, что гибриды F1 по количественным признакам занимают промежуточное положение между родителями. Эта тенденция сохраняется и в последующих поколениях.
Лишь в 1910 г. было обнаружено, что количественные признаки обусловлены точно такими же расщепляющимися генами и их передача также осуществляется в соответствии с теми же менделевскими законами, справедливыми для качественных признаков.

Г. Нильссон-Эле изучал наследование окраски зерен у пшеницы и овса и при дигибридном расщеплении получал, в отличие от уже знакомого нам соотношения 9 : 3 : 3 : 1, особое соотношение - 15 : 1. 15/16 зерен были окрашенными и лишь 1/16 - белыми. Такое расщепление Г. Нильссон-Эле объяснил сходным действием нескольких генов. Такие гены называют полимерными. Это означает, что два или более генов вызывают развитие одного и того же признака. Если мы вспомним решетку Пеннета для дигибридного расщепления то увидим, что во всех клетках, кроме одной, обязательно присутствует хотя бы один доминантный аллель - только одна комбинация является полностью рецессивной. Отсюда становится ясным, почему расщепление, полученное Г. Нильссоном-Эле, соответствует отношению 15:1: пятнадцать генотипов, содержащих доминантные аллели, дали окрашенные зерна, и лишь один генотип, представляющий собой двойной рецессив, дал белые зерна, по своему фенотипу значительно отличающиеся от остальных.

При полимерном наследовании эффекты доминантных генов могут быть двоякого рода. В одних случаях оказывается достаточным присутствия одного доминантного аллеля, чтобы признак максимально проявился - добавление дополнительных доминантных аллелей не оказывает заметного эффекта. Но существует и другой вариант действия полимерных генов, когда эффект тем больше, чем больше доминантных аллелей в генотипе. Понятно, что наибольший эффект будет у комбинации аллелей ААВВ, а наименьший - у комбинации aabb. Соответственно в этом случае при гибридизации полностью доминантной формы с формой, полностью рецессивной, мы получим ряд промежуточных классов.
В случае действия множества генов различные степени проявления признака фактически обусловлены той же самой дискретностью генетических факторов, что и в опытах Менделя с качественными признаками, однако внешне эффект будет выражаться в непрерывной изменчивости - чем больше доминантных аллелей в генотипе, тем степень выраженности признака сильнее, и наоборот. Результатом совместного действия генов на один и тот же признак будет нормальное распределение признака в популяции Простой подсчет показывает, что при увеличении числа локусов и аллелей с суммирующимся эффектом действия на определенный признак число возможных генотипов нарастает очень быстро. Так, если предположить, что гены какого-либо количественного признака располагаются в 20 локусах и имеют по 4 аллеля, то количество генотипов будет составлять 1020. Понятно, что частотная гистограмма степени выраженности признака при таком количестве генотипов будет все более сглаживаться и напоминать нормальное распределение. Вся изменчивость при этом будет носить чисто генетический характер, и количественная величина, характеризующая вариативность признака в популяции (дисперсия), в данном случае может быть названа генетической дисперсией. В большинстве случаев непрерывный характер изменчивости определяется как действием многих генов, так и взаимодействием генотипа со всевозможными средовыми условиями.
Аддитивное взаимодействие. При аддитивном эффекте происходит простая суммация действия полимерных генов. Предполагается также, что полимерные гены по силе действия равны друг другу. Только при соблюдении этих условий уровень развития количественного признака в потомстве (Fl, F2) будет строго промежуточным между родительскими формами, а кривая распределения генотипов будет точно соответствовать нормальной. Чем больше генов бyдет участвовать в расщеплении, тем меньше в поколении F2 будет доля особей, сходных с исходными родительскими формами, при этом частоты градаций количественного признака будут соответствовать коэффициентам разложения бинома Ньютона.
Доминирование и неполное доминирование. Чисто аддитивный характер взаимодействия генов встречается достаточно редко, чаще всего картина является более сложной. Для некоторых генов могут иметь место уже известные нам эффекты доминирования. При этом степень доминирования может отличаться для разных генов. В известных нам опытах Г. Менделя один из аллелей полностью подавлял другой, то есть имело место полное доминирование. Однако могут встречаться и пары аллелей, для которых доминантность и рецессивность не проявляются в полной мере. Это случаи неполного доминирования, или кодоминантности. В случае неполного доминирования гетерозиготы обладают промежуточным фенотипом между родительскими формами.
Эпистаз. Взаимодействовать могут не только аллели одного локуса, но и аллели, расположенные в разных локусах. В таких случаях говорят об эпистатическом взаимодействии, или просто эпистазе. При эпистазе присутствие определенного гена (именно его называют эпистатическим) полностью подавляет эффект действия другого гена, расположенного в другом локусе (подавляемый ген носит название гипостатического).
Сложные эффекты взаимодействия генов. Вообще фенотипические признаки, полностью контролируемые парой аллелей, расположенных в одном генном локусе, т.е. подобные тем, с которыми имел дело Г. Мендель, сравнительно редко встречаются в природе. Большинство признаков определяется взаимодействием нескольких генов, находящихся в разных локусах. При этом эффекты взаимодействия всего комплекса генов, определяющих данный фенотипический признак, могут включать как аддитивный компонент, так и различные степени доминирования и эпистаз. Взаимодействующие гены могут как усиливать эффект действия какого-либо гена, так и ослаблять его. В результате кривые распределения генотипов в потомстве не будут столь идеально соответствовать кривой нормального распределения, как при чисто аддитивном наследовании. Распределения могут оказаться асимметричными и даже многовершинными.
В настоящее время принято считать, что в детерминации количественных признаков принимают участие различные группы генов. Существуют главные гены (олигогены), значительно влияющие на развитие признака. Существуют гены с более слабым эффектом. И, наконец, существуют гены-модификаторы, которые определяют одни признаки, но одновременно модифицируют действие главных генов на другие признаки.


Вопрос 15.

Генетические однородные популяции (или клоны), в принципе, можно получить у простейших организмов или растений, размножающихся вегетативным делением. Существуют также и специально выведенные линии лабораторных животных, обладающих одинаковым генотипом по какому-либо признаку - так называемые чистые линии, получаемые путем близкородственного скрещивания (такой тип скрещивания называется инбридингом, а получаемые при этом чистые линии животных называются инбредными).

Итак, для некоторых видов живых организмов мы можем получить большое число особей с одинаковыми генотипами. Мы можем поместить их в различные фиксированные условия среды. В результате мы получим множество особей, все различия между которыми будут обусловлены только разницей в средовых условиях.

Если данный генотип чувствителен к среде, то, поместив множество одинаковых генотипов в различные строго фиксированные условия среды, мы получим множество отличающихся фенотипов. Мы можем измерить выраженность интересующего нас признака и построить график зависимости характеристик фенотипа от параметров среды. Экспериментально это возможно осуществить для клонов или чистых линий различных организмов. Полученные в результате графики зависимости особенностей фенотипа от параметров среды и будут отображать нормы реакции. Каждый генотип будет характеризоваться своей зависимостью, т.е. своей нормой реакции.
Дисперсия, которая обусловлена чисто средовыми причинами может быть названа средовой дисперсией. Различия в дисперсиях между разными линиями объясняются разной чувствительностью генотипов к среде: чем выше чувствительность данного генотипа к среде, тем выше фенотипическая дисперсия, порождаемая особенностями среды.
Таким образом, можно сказать, что генотип однозначно не определяет фенотип. Лучше сравнивать генотипы по характерным для них нормам реакции. Кроме того, следует подчеркнуть, что генотипы отличаются по их чувствительности к средовым воздействиям. Более чувствительному генотипу соответствует и большая средовая дисперсия.
Существуют примеры нормы реакции, при которой количественные изменения в окружающей среде могут привести даже к качественному изменению фенотипа, несмотря на то, что генотип остается одним и тем же.

Таким образом, можно сказать, что норма реакции - это специфический характер реакции данного генотипа на изменение окружающих условий. Генетики говорят, что наследуются не определенные признаки, а нормы реакций.
Под диапазоном реакции в генетике обычно понимают размах значений фенотипа в определенных границах среды.

Невозможность получить нормы реакции для признаков человека объясняется двумя причинами. Во-первых, у человека нельзя получить большое число генетически идентичных организмов, чтобы затем выращивать их в различных условиях. Максимальное количество генетически идентичных людей соответствует тем клонам монозиготных близнецов, которые доступны для изучения (как правило, не более пяти человек). Во-вторых, недопустимо подвергать людей различным средовым воздействиям в экспериментальных целях. Кроме того, для большинства психологических признаков пока даже не известно, какие особенности среды следует измерять.
Таким образом, точные нормы реакции для различных признаков человека, и тем более для психологических характеристик, получить практически невозможно. Однако на основании некоторых косвенных данных возможно гипотетическое моделирование нормы реакции.
Поскольку каждый человек обладает уникальным генотипом, он обладает и уникальной нормой реакции на те или иные средовые воздействия, то есть каждый генотип по-своему реагирует на одни и те же условия среды.

 

Вопрос 16.

Фенотипические различия между людьми объясняются по крайней мере двумя причинами. Во-первых, люди отличаются друг от друга своими генотипами. Это приводит к возникновению генетически обусловленной изменчивости. Во-вторых, каждый человек развивается в особенных средовых условиях. Это приводит к возникновению средовой изменчивости.

На конкретную величину признака оказывают влияние не только гены, но и средовые условия, например, характер питания или родительской заботы в детстве. Распределение фенотипов для каждого генотипа будет характеризоваться определенным средним значением и разбросом вокруг среднего, или дисперсией. Величина дисперсии будет определяться тем, насколько данный генотип чувствителен к средовым влияниям. Чем выше чувствительность генотипа к среде, тем большее разнообразие фенотипов мы получим и соответственно тем большей дисперсией будет характеризоваться данный генотип.

Предположим, мы смогли разделить людей, обладающих конкретными генотипами, на соответствующие группы, то есть мы разбили всю популяцию на шесть групп в соответствии с генотипом каждого человека. Обычно отдельные генотипы представлены в популяции неравномерно, поэтому можно ожидать, что и обладатели наших вымышленных генотипов встречаются с определенной частотой.

Таким образом, мы можем измерить:

среднее значение признака для каждого генотипа, частоту его встречаемости в популяции, величину разброса индивидуальных значений вокруг среднего, то этого генотипа росли в разных средах. Если генотип очень чувствителен к среде (например, BB и АС), ему будет соответствовать большая фенотипическая дисперсия, а если малочувствителен (например, СС), то выраженность признака у всех обладателей этого генотипа будет близка к генотипической средней. Форма же общепопуляционного распределения является следствием сложения всех частных распределений для каждого из генотипов.
Дисперсии генотипов значительно различаются вследствие их разной чувствительности к средовым влияниям. При этом дисперсия внутри каждого генотипа целиком определяется влияниями среды. Общая же изменчивость в популяции и характеризующая ее величина общепопуляционной дисперсии складывается из двух составляющих. Одна из них - это различия между генотипами, выражающиеся в различиях между средними значениями признака у обладателей отдельных генотипов (АА, АВ и т.д.), а другая - это различия внутри каждого из генотипов, которые определяются только средой. В нашем примере генетическая составляющая дисперсии возникает при участии только шести генотипов, то есть генетическая дисперсия возникла в результате различий между средними значениями признака имеющихся у нас шести генотипов. Средовая составляющая общепопуляционной дисперсии складывается из отдельных средовых дисперсий внутри каждого генотипа. Таким образом, общепопуляционная дисперсия состоит из средовой дисперсии внутри отдельных генотипов и генетической дисперсии, возникающей за счет различий между генотипами, что можно выразить формулой

VP = VG + VE.

Это означает, что генетическая дисперсия обусловливает чуть меньше половины всех индивидуальных различий в популяции.

 

Вопрос 17.

В количественной генетике долю генетической составляющей в общей фенотипической дисперсии признака принято называть наследуемостью в широком смысле слова, или просто наследуемостью. Наследуемость обычно обозначают символом h2. Наследуемость можно подсчитать, если величину генетической дисперсии разделить на величину общей дисперсии.

Показатель наследуемости - это генетическая составляющая дисперсии. Поэтому при символе наследуемости всегда стоит значок квадрата, указывающий на то, что показатель наследуемости есть компонент дисперсии.
Наследуемость является одним из основных показателей, которыми оперирует генетика поведения. Если наследуемость отлична от нуля, это означает, что в основе изменчивости признака лежат не только средовые, но и генетические причины. Когда задается вопрос, лежат ли в основе индивидуальных психологических различий наследственные причины, для ответа необходимо получить данные о влиянии генов на фенотипическую изменчивость. Величина коэффициента наследуемости и позволяет оценить меру влияния генотипа на изменчивость признака.
Наследуемость не является атрибутом признака как такового, а зависит от состава генотипов той популяции, на которой проведено исследование. В другой популяции с другим составом генотипов наследуемость того же самого признака может оказаться иной. Наследуемость может измениться и в том случае, когда один и тот же признак будет изучаться на той же территории, но спустя какой-то срок, поскольку за определенный период состав генотипов в популяции может измениться вследствие миграции или других причин.
Количественное значение показателя наследуемости не является атрибутом признака как такового, а относится лишь к признаку в конкретной популяции с определенным составом генотипов. К этому следует добавить, что не только состав генотипов, но и конкретные средовые условия, воздействию которых подвергаются индивиды, определяют количественные величины генетической и средовой дисперсии, а следовательно, и показателя наследуемости - при помещении популяции в другой диапазон сред мы можем получить совершенно иной коэффициент наследуемости. Проведение эксперимента в разных условиях также может повлиять на получаемый в результате коэф. Наследуемости.
Если у нас имеются данные о малой чувствительности признака к среде в каком-то узком средовом диапазоне, это еще не означает, что и в других средовых условиях признак будет нечувствителен к среде. Так же и генотипы, сильно различающиеся по своим проявлениям в одной среде, могут совсем не отличаться в другой.
Таким образом, высокая наследуемость ни в коей мере не означает невозможность изменения признака при изменении среды. По величине показателя наследуемости невозможно предсказать последствия изменений среды. Коэффициент наследуемости говорит лишь о том, какая доля генетической изменчивости существует в данной популяции в настоящее время и в существующих условиях среды.
Кроме того, необходимо понимать, что показатель наследуемости есть характеристика популяции, а не конкретного индивида и его конкретного фенотипа.

Вопрос 18. и Вопрос 19.

Лишь фенотипическая дисперсия (VP) может быть оценена непосредственно путем статистической обработки эмпирического материала.
Необходимо помнить, что фенотипическая дисперсия в популяции возникает в силу многих причин, каждая из которых вносит свой вклад в наблюдаемое разнообразие признаков.

В биометрической генетике разработаны специальные математические методы количественной оценки отдельных составляющих фенотипической дисперсии. Все они основаны на математическом моделировании и требуют основательной подготовки в области теории вероятностей, математической статистики и других разделов математики.

Как уже упоминалось, в полигенных системах существуют различные эффекты взаимодействия между генами (аддитивный, доминирование, эпистаз).

При чисто аддитивном взаимодействии зависимость фенотипа от генотипа будет линейной.

При доминировании не наблюдается линейной зависимости. Если присутствуют оба типа эффектов (аддитивный и доминирование), то наблюдаемые значения признака будут отличаться от теоретически ожидаемых.

Аддитивному и доминантному компонентам генотипического отклонения соответствуют и два компонента генетической дисперсии: VG = VА + VD.
Таким образом, формула фенотипической структуры популяции для модели, предполагающей наличие как аддитивных эффектов, так и эффектов доминирования, может быть записана так: VP = VА + VD + VE.
Доминирование возникает при взаимодействии генов одного локуса. Если подобные эффекты имеют место для разных локусов, то говорят об эпистазе. Тогда помимо аддитивного и доминантного компонентов в предыдущую формулу можно добавить дисперсию, обусловленную эффектами эпистаза (VI), и она примет вид: VP = VА + VD + VI + VE , где VА , VD и VI есть субкомпоненты генетической дисперсии VG.
Доступные для анализа факторы средовой дисперсии так или иначе связаны с условиями семейной и внесемейной среды, влияющей на возникновения сходства и различия родственников различных степеней родства.
Обозначение "межсемейная", означает, что это среда, которая формирует различия между семьями, но является общей для членов одной семьи. Эта среда систематически влияет на родственников, поэтому ее иногда называют систематической. К общесемейным факторам среды можно отнести все то, что С. Скарр предлагает называть различиями в возможностях (социально-экономический статус семьи): уровень достатка, жилищные условия, образование родителей, культурные традиции, особенности питания, отдыха и т.п. Общая среда может разделяться родственниками не только в условиях семьи. Любые сходные ситуации, в которых оказываются члены одной семьи, могут способствовать возникновению у них сходных особенностей. Все это и относится к общей, или разделенной, среде.
До середины 80-х гг. считалось, что общая среда вносит значительный вклад в средовую изменчивость. Например, для коэффициента интеллекта вклад общей среды оценивался в 30%. Однако впоследствии выяснилось, что такая оценка характерна лишь для детского возраста и начиная с 10-11 лет постоянно уменьшается, а к 18-20 годам практически приближается к нулю. Оказалось, что у детей, растущих в одной семье, среда формирует гораздо больше различий, чем сходства

Понятия "разделенная среда" и "семейная среда" не тождественны. Только те элементы содержания, которые будут восприняты сходным образом каждым из родственников, могут быть отнесены к разделенной среде.
Родственники могут разделять средовые условия и вне семьи. Например, если близнецы учатся в одном и том же классе, встречаются с общими друзьями, посещают вместе внешкольные занятия, ходят в театры и на концерты, то там они тоже разделяют многие средовые условия, которые могут формировать их сходство, но эти условия нельзя назвать семейной средой. Это внесемейная разделенная среда. К сожалению, современные статистические подходы не позволяют дифференцировать общие семейные и внесемейные факторы. Поэтому понятие общая (разделенная) среда не должно приравниваться к понятию семейная среда.
Теперь несколько слов о компоненте средовой дисперсии, который называется различающейся (неразделенной, индивидуальной и т.п.) средой. К этому компоненту относятся все факторы, приводящие к различиям между родственниками. Говоря о различающейся среде как компоненте фенотипической дисперсии, нельзя не упомянуть, что сюда же входят различия между родственниками, возникающие за счет ошибок измерений: отсюда одно из обозначений - е или е2 (от английского error - ошибка).
Теперь, познакомившись с субкомпонентами генетической и средовой дисперсии, мы можем записать исходную формулу разложения фенотипической дисперсии в более подробном виде: VP= VG + VE = ( VА + VD + VI ) + ( VB + VW ).
Это уравнение справедливо для модели, предполагающей эффекты аддитивного взаимодействия генотипа и среды. Вполне вероятно, что количественные значения признака будут меняться неравномерно при переходе из одной среды в другую, причем отдельные генотипы будут по-разному реагировать на одни и те же изменения среды. Тогда, как мы уже знаем, на фенотипическую дисперсию признака будет влиять еще один компонент - генотип-средовое взаимодействие ( V ), и уравнение разложения фенотипической дисперсии примет вид VP = ( VА + VD + VI ) + ( VB + VW ) + V.
Кроме того, при неравномерном распределении генотипов по средам имеет место генотип-средовая ковариация. Если индивиды подвергаются средовым воздействиям в соответствии со своими наследственными предрасположенностями, ковариация будет положительной и фенотипическая дисперсия увеличится. Если же среда будет действовать против наследственной предрасположенности, то появится отрицательная ковариация и фенотипическая дисперсия уменьшится. Добавим в уравнение фенотипической дисперсии компонент, соответствующий генотип-средовой ковариации, и тогда оно примет вид: VP = ( VА + VD + VI ) + ( VB + VW ) + V + 2covGE.
Ассортативность- избирательности браков. Более вероятно обнаружить ассортативность, т.е. корреляцию между супругами, для некоторых важных психологических характеристик, например таких, как интеллект. В среднем корреляция супругов по коэффициенту интеллекта составляет 0,3-0,4. Однако на концах распределения - и со стороны низких, и со стороны высоких значений - уровень ассортативности повышается. При ассортативности первичной является фенотипическая корреляция супругов, корреляция же между их генотипами вторична. Высокая положительная ассортативность приводит к тому, что у потомков супругов с высокими или низкими значениями признака выше вероятность получить двойную дозу генов-усилителей или ослабителей. При положительной ассортативности генетическая дисперсия возрастает. Это является результатом вторичной (генетической) корреляции между супругами, если признак находится под контролем генов. Можно ожидать высокой ассортативности и для признаков, которые формируются в большей степени под влиянием социального окружения. Например, высокая положительная ассортативность обнаруживается для таких признаков, как религиозные убеждения, политические установки, уровень образования, социально-экономическое положение.
Теоретически можно представить себе и отрицательную ассортативность, т.е. подбор супругов по противоположным качествам. Например, можно предположить, что мужчины, склонные к полноте, будут выбирать себе худеньких спутниц жизни, и наоборот. Отрицательная ассортативность приводит к уменьшению генетической дисперсии. Однако большинство исследований указывает на то, что браки чаще всего заключаются между людьми, похожими по многим фенотипическим признакам, что означает, что исследователи чаще имеют дело с положительной ассортативностью.
Ассортативность нарушает принцип панмиксии (свободного и случайного скрещивания), лежащий в основе многих генетико-математических моделей, поэтому, если известно, что ассортативность по какому-либо признаку имеет место, в формулы фенотипических корреляций в парах родитель-ребенок добавляют определенные коэффициенты, вносящие соответствующие поправки на ассортативность. Статистически контролировать ассортативность возможно только в сложных психогенетических моделях, объединяющих несколько методов исследования, например, близнецовый и семейный.

 

Вопрос 20.

Генотипические различия между людьми могут не превращаться в фенотипические, если среда не способствует этому. Это означает отсутствие фатальной неизбежности проявления всех генетических задатков, в том числе и неблагоприятных. Если условия среды приводят к увеличению фенотипических различий между носителями разных генотипов (например, доступность калорийной пищи в примере со склонностью к полноте), результатом будет увеличение фенотипической дисперсии в популяции.

Если же среда нивелирует различия между индивидами, фенотипическая дисперсия будет уменьшаться. Взаимодействие конкретных генотипов со средой может приводить к изменению фенотипической дисперсии. Этот феномен носит название генотип-средового взаимодействия. Поскольку генотип-средовое взаимодействие способно влиять на дисперсию признака в популяции, из этого следует, что оно порождает определенную долю фенотипической дисперсии. Примером такого рода взаимодействия может послужить такая ситуация, когда общительный и необщительный ребенок во время болезни находятся дома или в больницеДети более комфортно чувствуют себя в домашних условиях, в то же время общительного ребенка вынужденная изоляция от сверстников тяготит, однако в больнице он будет лучше адаптироваться, чем необщительный ребенок. В обычной школе умственно отсталые дети будут значительно отставать от обычных детей, тогда как в специализированной школе с программой, рассчитанной на умственно отсталых детей, последние дадут прирост успешности, а нормальные дети будут отставать от своих сверстников.
Г-С взаимодействие легко обнаруживается в экспериментах на животных. Классическим примером является разная обучаемость в лабиринте селектированных "умных" и "глупых" крыс в зависимости от условий выращивания молодняка.
В предыдущих темах мы рассматривали упрощенные модели, в которых принималось, что влияния генотипа и среды аддитивны. В таких случаях фенотипическая дисперсия представляет собой сумму генетической и средовой компоненты (VP = VG + VE). Если же имеют место Г-С взаимодействия, то в формулу фенотипической структуры популяции должен быть добавлен еще один компонент (VGE - дисперсия, обусловленная генотип-средовым взаимодействием). Тогда она примет следующий вид:VP = VG + VE + VGE.

О наличии Г-С взаимодействия свидетельствуют и различия в значениях коэффициентов наследуемости в контрастных средах. Например, при изучении наследуемости алкоголизма было обнаружено, что в популяции замужних женщин он оказывается ниже, чем в популяции незамужних. Более высокий коэффициент наследуемости говорит о более ярком проявлении генетической вариативности в среде, соответствующей ситуации незамужней женщины. Следовательно, в ситуации замужества наследственные различия по предрасположенности к алкоголизму, по-видимому, не проявляются столь заметно в фенотипических различиях. Из этого можно заключить, что отягощенный генотип должен быть более чувствителен к изменениям среды

Генотип-средовое статистическое взаимодействие увеличивает фенотипическую дисперсию в популяции.

Генотип-средовое взаимодействие является компонентом фенотипической дисперсии.

Следует различать генотип-средовое взаимодействие как статистический компонент дисперсии и реальное взаимодействие генотипа и среды при формированиии конкретного фенотипа.

 

 

Вопрос 21.

Генотип-средовая ковариация имеет место тогда, когда генотипы оказываются в определенных средах не случайно, а в соответствии со своей наследственной предрасположенностью. Это означает, что генотипы неравномерно распределяются по разным средам. Примером может служить соответствие различных видов, рас, подвидов, разновидностей различным местам обитания. Приспособленность генотипов к определенным условиям среды приводит к тому, что генотипы концентрируются в тех средах, которые больше соответствуют их особенностям. Генотип-средовая ковариация может как увеличивать, так и уменьшать дисперсию фенотипов в популяции. В жизни человека генотип-средовые ковариации играют важную роль. Родители могут передавать ребенку не только определенную генетическую предрасположенность, но и одновременно обеспечивать ему соответствующую среду для развития природных задатков. Генотип-средовая ковариация, как и генотип-средовое взаимодействие, влияет на общую дисперсию признака, а следовательно, может влиять на величину оценок наследуемости. В реальных популяциях генотип-средовая ковариация является обычным явлением и ее вклад в вариативность признаков, как правило, не равен нулю. Ковариация (корреляция) всегда положительна, если два параметра изменяются (ковариируют) в одном направлении. Например, чем больше рост, тем больше длина ступни человека. Это пример положительной ковариации. В рассмотренном нами случае генотип и среда также ковариируют положительно, поскольку лучшему генотипу соответствует лучшая среда и наоборот. Пассивной ковариация генотипа и среды называется потому, что ни родители, ни дети не прикладывают специальных усилий для создания среды: дети просто "наследуют" среду так же, как и гены. Это называется культурным наследованием.
Реактивной обычно называется ковариация, возникающая в результате специальных усилий социального окружения ребенка в ответ на какие-либо его специфические особенности, связанные с наследственной конституцией.
Реактивная ковариация может быть и отрицательной. Она может возникать, например, в том случае, когда наследственной отягощенности или какому-либо неблагополучию ребенка, обусловленному наследственными причинами, противопоставляются компенсирующие усилия родителей, врачей, педагогов, заставляющие работать среду против генотипа.
Положительная ковариация должна увеличивать фенотипическую дисперсию в популяции, а отрицательная - уменьшать.
В психогенетике, помимо пассивной и реактивной форм ковариации генотипа и среды, выделяют еще и активную ковариацию. Она характерна для более старших возрастов, начиная с подросткового, когда индивид самостоятельно (активно) выбирает ту среду, которая ему более подходитСуществующие в популяции генетические различия могут не превращаться в фенотипические, если среда не способствует этому.

Генотип-средовая ковариация может быть положительной, если и генотип и среда варьируют в одном направлении (чем хуже генотип, тем хуже среда; чем лучше генотип, тем лучше среда) и отрицательной, если генотип и среда варьируют в противоположных направлениях (чем хуже генотип, тем лучше среда и наоборот).

Положительная ковариация увеличивает популяционную дисперсию, отрицательная - уменьшает.

Различают три вида генотип-средовой ковариации: пассивную, реактивную и активную.

Генотип-средовое взаимодействие и генотип-средовая ковариация могут влиять на величины оценок наследуемости.

 

Вопрос 22.

Метод подбора моделей. Чтобы выбрать подходящую модель, адекватно описывающую изменчивость изучаемого признака в популяции, необходимо оценить соответствие модели наблюдаемым данным. В качестве эмпирических данных в психогенетике используются фенотипические значения признака у различных типов родственников. Соответствие модели проверяется с помощью статистических критериев. Если одна из моделей отвергается, проверяется следующая и т.д., пока не будет обнаружена модель, дающая наименьшее расхождение с наблюдаемыми данными. Это так называемый метод перебора моделей. Существуют различные методы получения оценок соответствия: метод невзвешенных наименьших квадратов, метод взвешенных наименьших квадратов, метод максимального правдоподобия. На выбор основной гипотезы о структуре фенотипической дисперсии влияют соображения простоты, здравый смысл и уже имеющиеся данные. Оптимальной считается ситуация, когда количество неизвестных меньше общего количества уравнений - избыточные уравнения дают больше степеней свободы для проверки приемлемости исходных допущений. Следует иметь в виду, что при однообразной выборке, где рассматриваются родственники одного-двух типов (например, только близнецы), сложные модели вряд ли смогут быть рассмотрены. Кроме того, важны и размеры самой выборки: чем она больше, тем легче сделать выбор между несколькими равно удовлетворительными моделями.
Соответствующие модели подбираются на основании конкретных исследований различных типов родственников, и в каждом случае имеются свои возможности и ограничения в зависимости от категорий родственников, включенных в эксперимент.
Анализ путей. Метод был предложен еще в 30-х гг. ХХ в. С. Райтом. Метод основан на графическом представлении причинных и корреляционных связей, или путей, между переменными, включенными в описание модели. Как правило, на диаграмме путей квадратами и кружками с прописными буквенными символами внутри обозначают наблюдаемые переменные (т.е. доступные непосредственному измерению), например фенотипические значения изучаемого признака, и так называемые латентные переменные (недоступные измерению): генотипические значения, параметры общей и различающейся среды и т.п. Метод путевого анализа, по существу, является представлением статистических зависимостей в виде диаграмм и позволяет получить такие же результаты, как и обычные методы.

Моделирование сопряженной вариативности. Генетические и средовые корреляции. В психогенетике часто возникает задача одновременного изучения не одного, а нескольких признаков, подобно тому, как это делал Г. Мендель при дигибридном скрещивании. Однако Г. Мендель имел дело с альтернативными (качественными) признаками, нас же больше интересуют количественные мультифакториальные, к которым относятся почти все психологические характеристики.
В природе широко распространено явление плейотропии, т.е. множественного действия одного и того же гена. Вполне вероятно, что эффект плейотропии является основой возникновения корреляций между признаками. Возможно, существуют и средовые причины корреляций. Например, психическая депривация в раннем детстве может послужить причиной сопряженных изменений когнитивной и личностной сферы.
Фенотипическая корреляция двух признаков может быть представлена в виде соответствующей диаграммы путей на которой символами обозначены соответственно генетические и средовые корреляции. Для оценки генетических и средовых корреляций в психогенетике разрабатываются соответствующие схемы исследований. Это одно из перспективных направлений в современной психогенетике, поскольку оно позволяет продвинуться в понимании происхождения не только вариативности самих фенотипов, но и их корреляции.

Структурное моделирование. Структурное моделирование представляет собой один из наиболее сложных современных методов. Применение этого метода требует соответствующей квалификации исследователя и наличия компьютерных программ, специально разработанных для этих целей (LISREL, EQS). Метод используется для анализа большого количества зависимых и независимых переменных, включенных в различные гипотезы исследования. Оценка и тестирование моделей при этом требует наличия больших выборок и современного компьютерного обеспечения.

Таким образом, чтобы приступить к построению модели и ее экспериментальной проверке, необходимо иметь гипотезу об участии тех или иных факторов в формировании изменчивости изучаемого признака в популяции и спланировать эксперимент таким образом, чтобы выборки изучаемых категорий родственников

При применении математического моделирования на выбор основной гипотезы о структуре фенотипической дисперсии влияют соображения простоты, здравый смысл и уже имеющиеся данные. Чем больше различных типов родственников включены в анализ, тем более сложные модели могут рассматриваться и уточняться.

Одним из современных методов моделирования в психогенетике является метод анализа путей. Этот метод является представлением статистических зависимостей в виде диаграмм.

Для анализа большого количества зависимых и независимых переменных, включенных в различные гипотезы исследования, используется структурное моделирование. Метод требует наличия больших выборок и современного компьютерного обеспечения.

 

Вопрос 23.

Одним из основных методических приемов генетики является семейное сравнение, т.е. сравнение организмов, объединенных родством. Г. Мендель, проводя опыты с горохом, изучал поколения родителей и потомков. Ф. Гальтон, анализируя родословные знаменитостей, сравнивал людей, связанных родственными узами. Из предыдущего изложения понятно, что основные экспериментальные подходы психогенетики также связаны с изучением различных категорий родственников. Семейное сходство включает в себя наследственный и средовой компоненты. Необходимо различать сходство семейное и сходство генетическое. Многие черты являются семейными, не будучи наследственными.

Вероятность того, что двое людей обладают одинаковыми аллелями, называется коэффициентом родства. Коэффициент родства соответствует доле идентичных аллелей, имеющихся у двух индивидов, благодаря их происхождению от общего предка. Коэффициенты родства рассчитываются теоретически на основе теории вероятностей и математической статистики. Понятно, что только половина потомков будут нести тот же аллель, что и у одного из родителей. В большинстве культур браки между близкими родственниками запрещаются. Это связано с тем, что при близкородственных браках выше вероятность встречи рецессивных аллелей, связанных с различными аномалиями. В гомозиготном состоянии такие аллели приводят к возникновению патологических отклонений. При неродственных браках вероятность проявления патологических аллелей гораздо ниже.

При образовании половых клеток (гамет) происходят вероятностные события. В результате родные братья и сестры получают какое-то количество одинаковых аллелей.

Вероятность того, что двое людей обладают одинаковыми аллелями, называется коэффициентом родства. Коэффициенты родства для различных категорий родственников рассчитываются теоретически на основе теории вероятностей и математической статистики.

 

Вопрос 24.

При анализе сходства/различия альтернативных признаков используют оценки конкордантности. Чаще всего оценки конкордантности используются в клинической психогенетике при изучении причин различных психических заболеваний или отклонений в развитии. Пары родственников называются конкордантными, если оба имеют или не имеют данный признак. Соответственно, дискордантными называются пары, в которых один обладает данным признаком, а другой - нет. Для оценки конкордантности подсчитывается процент совпадения альтернативных признаков в парах родственников. Те индивиды, которые обладают интересующим нас признаком, называются пробандами.
Исследованию подлежат пробанды и их родственники различной степени родства (близнецы, сибсы, родители, дети и т.п.). Коэффициенты конкордантности помогают определить риск заболеваемости для различных категорий родственников.

При анализе количественных признаков сходство между родственниками оценивается с помощью корреляции.
В статистике коэффициент корреляции обычно используется для оценки меры связи между двумя величинами. Графически положительная корреляция между двумя величинами может быть представлена в виде линии с положительным наклоном при этом на осях Х и Y откладываются значения коррелируемых признаков; отрицательная корреляция может быть представлена в виде линии с отрицательным наклоном отсутствие корреляции выражается в отсутствии наклона соответствующей линии Таким образом, величина корреляции говорит нам о том, насколько отклонения от средней одной величины совпадают с отклонениями другой. Однонаправленный характер отклонений приводит к возникновению высокой положительной корреляции. Вместе с тем величина коэффициента корреляции не несет никакой информации об абсолютных величинах двух признаков. В зависимости от типа родственников используется тот или иной тип коэффициента корреляции. В тех случаях, когда оценивается сходство между парами родственников, принадлежащих разным поколениям (родитель-ребенок, дед-внук и т.д.), используют межклассовый коэффициент корреляции, предложенный Карлом Пирсоном.
Для оценки степени сходства между близнецами и сибсами используется внутриклассовый коэффициент корреляции

Коэффициент корреляции не предполагает наличия какой-либо причинно-следственной зависимости между переменными. Коэффициент корреляции позволяет определить лишь наличие статистической связи между переменными, но не позволяет установить причину этой связи. В статистике существует и другой метод измерения связи, который предполагает оценку зависимости одной переменной от другой. Это метод линейной регрессии. Метод регрессии позволяет предсказать, какую величину будет иметь зависимая переменная у при любых значениях независимой переменной х. Речь фактически идет об уравнении регрессии уi = a + b( xi - x ), в котором нам необходимо определить величины а и b соответствующей линии регрессии. Независимая переменная (xi - x) представляет собой отклонение признака данного индивида от среднепопуляционной величины. Линия регрессии строится таким образом, чтобы квадраты расстояний между ней и всеми точками на графике были минимальными Коэффициент b называется коэффициентом регрессии у на х. Если коэффициент регрессии достоверно выше 0, то говорят о зависимости переменной у от переменной х. В количественной генетике регрессия применяется в основном в исследованиях родителей и детей. Часто используют одновременно и регрессию, и корреляцию. Регрессия имеет ряд преимуществ по сравнению с корреляцией, применение которой ограничено рядом условий, о которых речь пойдет в следующем разделе. Регрессия менее чувствительна к этим условиям.

Термин регрессия был введен Ф. Гальтоном при исследовании роста у родителей и детей. В этой работе Ф. Гальтон отметил, что у более высоких отцов сыновья также отличаются высоким ростом, но все же они несколько ниже своих отцов. У отцов небольшого роста сыновья так же невысоки, но они обычно выше своих отцов. Таким образом, рост детей как бы стремится к популяционной средней. Это явление Ф. Гальтон назвал регрессией на среднюю.

Таким образом, при определенных условиях коэффициент корреляции в парах родственников должен соответствовать доле общих генов, или коэффициенту родства.

Каковы же эти условия, или допущения, при которых реально наблюдаемое внутрисемейное сходство должно соответствовать теоретически рассчитанному? Условия эти сводятся к следующему:

исследуемый признак детерминирован исключительно генотипом, условия среды никак не сказываются на фенотипе;

гены обладают чисто аддитивным эффектом, отношения доминантности и рецессивности, эффекты эпистаза не имеют места;

у мужа и жены отсутствует корреляция по изучаемому признаку, т.е. брак является случайным в отношении изучаемого признака. Иначе говоря, не наблюдается ассортативности по исследуемому признаку.

Из всех количественных признаков человека лучше всего удовлетворяют этим условиям дерматоглифические узоры на пальцах.

В отличие от корреляции, регрессия менее чувствительна к ассортативности, поэтому регрессией можно пользоваться в семейных исследованиях, когда предполагается избирательность браков по изучаемому признаку. Регрессия позволяет также выявлять так называемый материнский эффект, т.е. влияние фенотипа матерей на фенотип потомства. При материнском эффекте регрессия потомков к матерям значительно больше, чем регрессия к отцам. По регрессии можно судить и о наличии эффектов доминирования. Обычно для изучения наследуемости стараются применять различные методы: вычисление коэффициентов корреляции между различными группами родственников (родители-потомки, сибсы, полусибсы, матери-дочери и т.д.) и вычисление коэффициентов регрессии тем или иным способом.

Коэффициент конкордантности используют при анализе сходства и различий между родственниками по альтернативным признакам, например по наличию или отсутствию какого-либо заболевания или отклонения. По коэффициентам конкордантности родственников разной степени родства можно судить о возможной наследуемости признака и риске заболевания для родственников.

Коэффициент корреляции используют при анализе сходства и различий между родственниками по количественным признакам. Высокая корреляция указывает на преобладание однонаправленных отклонений значения изучаемого признака у родственников от выборочной средней. Это не предполагает обязательного сходства в абсолютных величинах признака в парах родственников.

Коэффициент регрессии чаще всего применяется при исследованиях родителей и детей и, в отличие от коэффициента корреляции, может служить мерой причинно-следственной зависимости между переменными. Регрессия при определенных условиях соответствует доле общих генов у родственников, т.е. коэффициенту родства.

Если регрессии родителя к ребенку и ребенка к родителю совпадают, то коэффициент регрессии будет эквивалентен коэффициенту корреляции.

При определенных условиях теоретически рассчитанное сходство между родственниками (коэффициенты родства) совпадает с эмпирически полученными коэффициентами корреляции и регрессии. Эти условия таковы:

исследуемый признак является количественным и в его детерминации принимают участие только полигены, условия среды не влияют на признак;

гены обладают чисто аддитивным (суммирующимся) эффектом;

по данному признаку отсутствует ассортативность (избирательность браков).

 

26 Разновидности близнецового метода и области их применения.

1) Классический близнецовый метод. схема, при которой выраженность исследуемого признака сопоставляется в парах МЗ и ДЗ близнецов и оценивается уровень внутрипарного сходства партнеров. 2) Метод контрольного близнеца. Используется на выборках МЗ близнецов. Поскольку МЗ близнецы очень сходны по многим признакам, из них можно составить две выборки, уравненные по большому числу параметров. Такие выборки используют для изучения влияния конкретных средовых воздействий на изменчивость признака. 3) Лонгитюдное близнецовое исследование. проводится длительное наблюдение - прослеживание одних и тех же близнецовых пар. Фактически это сочетание классического близнецового метода с лонгитюдным. изучения генетических и средовых факторов в развитии. 4) Метод близнецовых семей. Представляет собой сочетание близнецового метода с семейным. При этом исследуются члены семей взрослых близнецовых пар. Дети МЗ близнецов по своей генетической конституции являются полусибсами, т.е. как бы детьми одного и того же человека от разных браков. Этим методом, изучая мужские и женские пары МЗ и их потомство, можно исследовать, например, влияние материнского эффекта. 5) Метод разлученных близнецов. невозможно абсолютно однозначно развести влияние генетических и средовых факторов, сравнение внутрипарного сходства близнецов, которые были разлучены в раннем возрасте и никогда не встречались друг с другом. 6) Метод частично разлученных близнецов. В последнее время в генетических исследованиях стал применяться метод, который состоит в сравнении внутрипарного сходства МЗ и ДЗ близнецов, живущих какое-то время врозь.
Цель близнецовых исследований состоит в получении данных, применимых не только к самой выборке близнецов, но и ко всей популяции в целом. Чтобы выводы, сделанные в близнецовом исследовании, были справедливы и по отношению к одиночнорожденным, необходимо учитывать систематические различия между близнецами и неблизнецами.

27 Биологические и психологические особенности развития близнецов. Близнецовая ситуация. Типичные ошибки родителей при воспитании близнецов. Психологическое консультирование семей с близнецами.

Существуют два типа близнецов - монозиготные и дизиготные (МЗ и ДЗ), или, что то же самое, - однояйцевые и двуяйцевые.

МЗ близнецы - это дети от многоплодной беременности, которые развиваются из одной оплодотворенной яйцеклетки (зиготы) в результате разделения одного зародыша на два самостоятельных организма на ранних стадиях эмбрионального развития. МЗ близнецы имеют идентичные генотипы (100% общих генов). МЗ близнецы всегда одного пола.

ДЗ близнецы - это дети от многоплодной беременности, которые развиваются из двух яйцеклеток, оплодотворенных двумя спермиями (из двух зигот). По своей генетической конституции ДЗ близнецы соответствуют обычным братьям и сестрам (сибсам), т.е. имеют в среднем 50% общих генов. ДЗ близнецы могут быть разного пола.

Частота рождения близнецов зависит от зиготности. В среднем ДЗ близнецы рождаются в два раза чаще, чем МЗ. Частота рождения ДЗ близнецов колеблется в зависимости от популяции.

28 Генеалогический и семейный методы в психогенетике, их возможности и ограничения. Примеры применения.

Генеалогический метод - в генетике человека метод анализа родословных. Применяется для изучения характера распределения наследственных признаков в семьях. Чаще используется в медицине для генетического анализа различных патологических отклонений.

Семейный метод - в генетике метод, предполагающий сравнение сходства и различий между родственниками в семьях по интересующему признаку.

Для генетического анализа дискретных признаков может применяться метод изучения родословных. В случае менделирующих признаков анализ родословных позволяет определить тип наследования (аутосомный, сцепленный с полом, доминантный, рецессивный и т.п.).

При изучении количественных признаков можно проводить семейные исследования - рассматривается сходство членов одной семьи друг с другом.

О влиянии генотипа говорят в тех случаях, когда большей степени родства соответствует большее сходство (корреляция) по изучаемой характеристике.

Семейное исследование в генетике поведения не позволяет четко развести средовые и генетические влияния и относится к "нежестким" экспериментальным схемам, поскольку родственники, имеющие больше общих генов, имеют и более похожие условия среды.

К сложностям семейных исследований можно отнести различия в возрасте между родственниками, принадлежащими к разным поколениям.

 

29. Метод приемных детей в психогенетике. Основная схема метода. Возможности и ограничения метода. Примеры исследований.

Метод приемных детей является жесткой экспериментальной схемой, позволяющей четко разводить влияния генетических и средовых факторов на изменчивость изучаемых психологических характеристик. При использовании метода приемных детей производится сопоставление детей с их биологическими родителями и родителями-усыновителями. Высокая корреляция между детьми и биологическими родителями свидетельствует о генотипических влияниях на изменчивость изучаемой характеристики. Высокая корреляция между детьми и родителями-усыновителями свидетельствует о средовых влияниях. Но: эффекты внутриутробной среды у усыновленных детей определяются их биологическими матерями, поэтому, строго говоря, нельзя считать, что у таких детей нет элементов общей среды с их биологическими матерями. Если изучаемый признак чувствителен к влияниям внутриутробной среды, то в схемах исследования необходимо учитывать и материнский эффектВ ряде стран (в том числе и в России), в связи с существующими там традициями усыновления (тайна усыновления охраняется законом), применение метода приемных детей практически невозможно.

Примеры: Колорадское исследование приемных детей:Женщины(католички) отказывались от ребенка после рождения т к не могли сделать оборт по вероисповеданию,и община помогала найти семьи-усыновителей(психологически нормальные биологические матери).Корреляции между родителями(био и соц) по интеллекту былиблизки к 0.

30 Геномика и психогенетика. Однонуклеотидные полиморфизмы. Генетические маркеры. Основные принципы анализа сцепления и картирования генов на хромосомах. Классический анализ сцепления.

Геномом называется полный состав ДНК клетки.

Геномика - это молодая интенсивно развивающаяся отрасль генетики, изучающая принципы построения геномов и их структурно-функциональную организацию.

Структурная геномика изучает нуклеотидные последовательности ДНК, в том числе строение и локализацию генов. Одной из задач структурной геномики является построение генетических карт организмов.

Функциональная геномика решает задачи идентификации функций отдельных участков генома и механизмы их взаимодействий в клеточном ансамбле.

Современные представления о геноме человека базируются на открытие полимеразной цепной реакции (ПЦР), позволяющей получать достаточное количество ДНК для анализа, и разработке методов секвенирования, которые позволяют расшифровывать точную последовательность нуклеотидов в цепях ДНК.

В конце 80-х годов ХХ столетия началось осуществление международного проекта "Геном человека", основной задачей которого было секвенирование генома человека. Полное секвенирование генома человека было завершено в 2000 году.

Секвенирование генома человека привело к открытию огромного количества однонуклеотидных полиморфизмов (ОНП) - генетических вариантов последовательностей нуклеотидов одного и того же участка ДНК у разных людей. Распределенные по всему геному ОНП используются в качестве генетических маркеров.

В современной психогенетике используются три основных подхода к изучению поведенческой геномики: анализ сцепления, анализ ассоциаций, непосредственный анализ ДНК (секвенирование и иденти

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.