Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ГОРМОНЫ ПАРАЩИТОВИДНОЙ ЖЕЛЕЗЫ



Паратгормоно влияет на концентрацию Са в плазме (повышает) в результате воздействия на кишечник, кости и почки Эффект действия на костную ткань связан в основном со снижением Са-связывающей способности костей Гормон после связывания с рецептором активирует аденилатциклазу мембран костных клеток и увеличивает поступление Га в эти клетки Увеличение концентрации Са в остеокластах приводит к I угнетение цитратеинтазы 2 итибирование синтеза коллагена 3 активаций лизосомальных ферментов участвующих в рассасывании кости

Паратгормон—это пептидный гормон (84 аминокислотных остатка), образующийся в паращитовидных железах, расположенных на задней поверхности щитовидной железы Его синтез и секреция стимулируются при снижении концентрации Са2+ в крови и подавляются при повышении Период полужи-чш парат-гормона в крови человека составляет примерно 10 мин

Основными органами-мишенями паратгормона являются кости и почки Мембраны клеток этих органов содержат специфические рецепторы, улавливающие Паратгормон, которые связаны с аденилатциклазой В костях активация аденилатциклазы стимулирует метаболическую активность остеокластов, в результате чего начинается резорбция кости и поступление Са2+ и фосфатов в кровь В почках Паратгормон увеличивает реабсорбцию Са2+ и уменьшает реабсорбцию фосфатов, в результате Са2+ сберегается для организма, а фосфаты выводятся Восстановление нормальной концентрации Са2+ в крови приводит к прекращению синтеза и секреции гормона

16.ВИТАМИНЫ, КЛАССИФ, БИОЛ РОЛЬ…ГИПО…ГИПЕР…

Витамины — необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируется (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Содержание витаминов в продуктах значительно ниже, чем основных нутриентов — белков, жиров и углеводов, и не превышает, какправило,10-100 мг/100 г продукта.

Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений в деятельности органов и систем при дефиците любого из витаминов. Под авитаминозами понимают полное истощение витаминных ресурсов организма. При гиповитаминозах отмечается резкое снижение обеспеченности организма тем или иным витамином. Введение в организм избытка витаминов может вести к серьезным патологическим расстройствам - гипервитаминозам. Наряду с гипо- и авитаминозами в последние годы выделяют еще одну форму дефицита витаминов — субнормальную обеспеченность организма человека витаминами, обозначаемую как маргинальную («биохимическую») недостаточность, которая представляет собой доклиническую стадию дефицита витаминов и характеризуется только биохимическими нарушениями

КЛАССИФИКАЦИЯ ВИТАМИНОВ:1). Жирорастворимые витамины Витамин А, Витамин D, (кальциферолы), Витамин Е (токоферолы) Витамин К.

2). Водорастворимые витамины: Аскорбиновая кислота (витамин С), Витамины группы В - Тиамин (витамин В1), Рибофлавин (витамин В2), Витамин В6 (пиридоксин), Ниацин (витамин РР, никотиновая кислота), Цианокобаламин (витамин В12), Фолиевая кислота (фолацин), Пантотеновая кислота (витамин Вз), Биотин (витамин Н).

3). Витаминоподобные соединения: Витамин Р (биофлавоноиды), Холин, Миоинозит (инозит, мезоинозит), Витамин U, Липоевая кислота, Оротовая кислота, Пангамовая кислота (витамин В15)

23. ЛИПИДЫ И ЛИОИДЫ….КЛАССИФИКАЦИЯ…

Липиды - природные органические соединения (крайне гегерогенны по своей химической структуре) общими свойствами которых является низкая растворимость в воде и хорошая растворимость в аполярных растворителях таких как хлороформ, жидкие углеводороды и др

/. Жирные кислоты и их производные. - это алифатические карбоновые кислоты число атомов в которых может достигать 22-24 Они подразделяются на насыщенные жирные кислоты - не имеющие в своей структуре двойных связей И ненасыщенные жирные кислоты - имеющие в своей структуре двойные или даже тройные С - С связи (тройные встречаются крайне редко)

Ненасыщенные жирные кислоты в свою очередь делятся на

а) моноеновые те содержащие одну двойную связь

б) полиеновые, содержащие много двойных связей (диеновые, триеновые и др)

Природные ненасыщенные жирные кислоты (незаменимые) обычно имеют тривиальное название, например алеиновая, линоливая, линоленовая арахндоновая

Жирные кислоты в организме выполняют несколько функций. Прежде всею несомненно это энергетическая функция. Так же выполняют структурную функцию. Выполняют пластическую функцию Из ацетилКоА (продукт распада жирных кислот) в гепатоцитах синтезируются ацетоновые тела, холестнрол А эйкоюполяевовые кислотыиспользуются для синтеза рядя биорегуляторовэто простогландины. тромбоксаны, Особенно необходимо подчеркнуть, что ряд полиненасьпценных жирных кислот относятся к незаменимымВажную роль в регуляции функционирования клеток различных органов и тканей играет производные эйкозопояиеновых кислот, так называемые эйкозоноиды. К ним относятсяпростоноиды а) простогландины, 6) простоциклины, ъ)лейкотриены; г) трамбоксаны Первые три группы соединений (простогландины, простошклины, лейкотриены) объединяют так же в группу простоноиды Эйкозополиеновые кислоты - высшие жирные кислоты с 20 атомами углерода в цепи и имеющие в своей структуре несколько двойных связей

Простогландины, которые делятся на простогландины а, в, с, d и т д относятся к виорегуляторам паракринной системы. При очень низких концентрациях они вызывают сокращение гладкой мускулатуры, 1 участвуют в развитии воспалительной реакции. 2 они принимают участие в регуляции процесса свертывания крови, и 3 регулируют метаболические пути на уровне клеток Иначе их называют местными гормонами Тромбоксаны образуются в тромбоцитах и после выхода в кровяное русло вызывают сужение кровеносных сосудов и агрегацию тромбоцитовПростоцикянни образуются в стенках кровеносных сосудов и являются сильными ингибиторами агрегации тромбоцитов Лейкотриены представляют собой группу триенов с сопряженными двойными связями Они образуются в тромбоцитах, лейкоцитах и макрофагах в ответ на имуниологические и неимуннологические стимулы а) принимают участие в развитии анофелоксии, б) повышают проницаемость кровеносных сосудов, в) вызывают приток и активацию лейкоцитов Я. Глициринсодержащие липиды.Из глициринсодержащих липидов наибольшее значение имеют и Обычно их рассматривают как производные трехатомного спирта – глицерола делятся по количеству входящих в их состав ацильиых групп на а) моноацилглицигины -1 жирный кислотный остаток б)диадилпшцериныв)триацилглицерины Триайилглицерины.составляют основную массу резервных липидов человеческого организма Триацилглицерины выполняют резервную функцию Причем это преимущественно энергетический резерв организма Глицерол, входящий в структуру триацилглицерннов, может использоваться для синтеза глюкозы или некоторых2) Являясь одним из основных компонентов жировой ткани, триацилглицерины участвуют в защите внутренних органов человека от механических повреждений 3) Участвуют в терморегулящии, образуя теплоизолирующую прослойку Все глицерофосфолипиды можно рассматривать как производные фосфотидной кислоты которой один атом заменен на аминоспирт Основной функцией глицерофосфолипидов является структурная Они входят в качестве важнейших структурных компонентов в состав мембран 2)Некоторые гпицерофосфолнпиды выполняют специфические функции Например инозитолфосфотиды участвуют в работе регуляторных механизмов в клетке Ш. Липиды, не содержании глицерола.К этим липидам относятся множество самых разнообразных соединений химической природы Мы остановимся только на трех группах веществ имеющих высокую биологическую значимость а) сфинголипиды б) стероиды в) полипреноиды Сфинголипиды. Можно рассматривать как производные стерамида Отдельные классы сфингошгшдов отличаются друг от друга только характером группировки присоединенной функния сфшхалипидов Прежде всего структурная функция Они входят обязательно в состав клеточных мембран Углеводные компоненты цереброзидов и ганпшозидов участвуют в образовании гдикокаликса Причем в этом качестве они играют определенную роль во - первых в реализации межклеточных взаимодействий во - вторых во взаимодействии клеток с компонентами межклеточного вещества3) Ганглиозиды выполняют рецепторные функцииСтероиды. К ним относятся соединения имеющие в своей структуре стерановое ядро Различные соединения из класса стероидов отличаются друг от другаа) дополнительными углеводородными радикалами, б) наличием двойных связей,в) наличием различных функциональных групп г) различия могут ноешь стереохимический характер Биологически важные соединения сгпероидной природы

1) Холистерол 2) Стероидные гормоны (гормоны коры надпочечников глюко- и минералокортикоиды) 3)

Половые гормоны (андрогены и эстрогены)

ТКАНЕВОЕ ДЫХАНИЕ

Распад органических веществ в живых тканях, сопровожда­ющийся потреблением кислорода и выделением диоксида угле­рода, называют тканевым дыханием. Тканевое дыхание

можно наблюдать, используя срезы тканей. Если срезы инкубировать в растворе глюкозы в замкнутом сосуде, то в растворе происходит убыль глюкозы, а в воздухе над жидкостью — убыль кислорода и прирост диоксида углерода. Интенсивность тканевого дыхания в разных тканях неодинакова.

Термин тканевое дыхание прежде всего указывает на ту сто­рону процесса, которая связана с поглощением кислорода и выделением углекислого газа. Поглощение кислорода происходит в результате действия митохондриальной цепи переноса электро­нов и протонов, поэтому ее называют также дыхательной цепью. Выделение СО2 как мы видели, происходит за счет реакций де-карбоксилирования и общем пути катаболизма.

18. ГЛИКОГЕН….СИНТЕЗ ГЛИКОГЕНА

Повышение концентрации глюкозы в крови (например в результате ее всасывания из кишечника на высоте пищеварения) поступление глюкозы в клетку может увеличиваться и часть глюкозы может использоваться для синтеза гликогена Накопление резерва углеводов в клетках в виде гликогена имеет преимущество по сравнению с накоплением глюкозы Поступившая в клетку глюкоза подвергается фосфорилированию с участием фермента гексокиназы или гюкокиназы. Образующаяся глюкоза-6-фосфат с участием фермента фосфоглюкомутаэы изомеризуется в глюкоза-1-фосфат Далее глюкоза-1-фосфат за счет энергии уридинтрифосфорной кислоты с участием фермента глюкоза-I-фосфат уридил трансфераза превращается в уридиндифосфоглюкозу Образующийся пирофосфат немедленно расщепляется пирофосфотазой необратима - реакция термодинамического контроля УДФ глюкоза с участием фермента гликоген-синтетазы (этот фермент способен образовывать а-1,4-гликозидные связи в гликогене) включается в молекулу гликогена Фермент гликоген-синтетаза способен присоединять остатки к строящейся молекуле гликогена только путем образования а 1,4-гликозндной связи Следовательно с участием этого фермента может синтезироваться только линейный полимер Гликоген полимер разветвленный имеющий а-1,б-гликозидные связи в точках ветвления Оказывается для образования этих связей необходим еще один фермент получивший название фермента ветвления Синтез гликогена идет во всех органах и тканях Однако наибольшее количество содержится в печени и мышцах Включение одного остатка глюкозы в молекулу гликогена сопровождается использованием двух макроэргических эквивалентовНеобходима одна молекула АТФ и одна молекула УДФ Поэтому синтез гликогена может идти только при достаточной энергообеспеченности клеток,т е при высокой концентрации АТФ.

МОБИЛИЗАЦИЯ ГЛИКОГЕНА

Гликоген как резерв глюкозы накапливается в клетках в постадсорбционном периоде (после всасывания) и расходуется затем. Расщепление гликогена в печени получило название мобилизация гликогена Происходит за счет фермента гликоген фосфорилазы Он катализирует расщепление а-1,4-гликозидные связи в молекулах гликогена Гликоген-» гл-1-ф <—> гл.-6-ф -> глюкоза + НзРО, (С,Н100,)п фосфородиз фосфоглюкомутаза глюкоза-6-фосфотаза Регуляция процессов синтеза и распада гликогена. Сопоставим эти процессы. Эти процессы различны Это обстоятельство дает возможность раздельно регулировать синтез и распад гликогена Регуляция осуществляется на уровне 2 ферментовгликогенфосфорилазы и гликогенсинтетазы Основным механизмом регуляции активаостн этих ферментов являетсяих ковалентная модификация путем фосфорилирования – дефосфорилирования Фосфорилированная фосфорилаза активна(отвечает за расщепление гликогена) ее называют фосфорилаза-АВ то время как фосфоритрованная гяикогенсинтетаза неактивна ( активная форма отвечает за синтез) а дефосфоршппмванные формы наоборотДефосфорилированная фосфорилаза неактивна - фосфорилаза-В

РАСПАД ГЛИКОГЕНА В ПЕЧЕНИ Первичным сигналом стимулирующим мобилизацию гликогена в печени является снижение концентрации глюкозы в крови Если вы хотели есть, но вас отвлекли как ребенка и ничего не давать, то дальше он уже не просит есть Почему?

1. В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН. 2. Глюкагон циркулирующий в крови взаимодействует со своим белком-рецептором находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс 3. Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы (G белки меняют свою конформацию и переводят в активную форму адекилатциклазу) 4. Активная форма начинает образовывать циклический АМФ из АТФ 5. ЦАМФ способен активировать еще один фермент - протеилкитза Этот фермент состоит из 4 субъединиц 2-х регуляторных и 2-х каталитических Две молекулы ЦАМФ присоединяются к регуляторньш субъединицам => происходит изменение конформации и высвобождаются каталитические субъединицы 6. Каталитические субъеднницы обеспечивают фосфорнлироваиие ряда белков,в том числе ферментов В частности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген Кроме этого происходит фосфорилирование киназы-фосфорилазы (слово киназа означает фосфорилироваиие) которая фосфорилирует пшкогекфосфоршшу Отсюда активация расщепления гликогена с выходом глюкозы в кровь. Выброшенная глюкоза в кровь увеличивает концентрацию доводя ее до нормальных величин Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина

ВИТАМИНЫ – КОФЕРМЕНТЫ

Коферменты — это органические вещества, как правило, аминокислотной природы, непосредственно участвующие в катализе в составе фермента. Простые, относятся обычно к классу гидролаз, практически все гидролитические ферменты состоят только из

аминокислот, т.е. являются простыми белками. Кроме того, некоторые лиазы, а вот все остальные классы ферментов в основном явл. сложными белками, т.е. для каталитической активности многих ферментов кроме белковой части необходим второй компонент получивший название кофактор. Есть каталитически активный фермент вместе с

кофактором получил название холофермент. Это каталитически активный фермент, состоящий из белковой и небелковой части кофактора. Белковая часть холофермента получила название апофермент.

Характерной особенностью холофермента или сложных ферментов протеидов является, то, что ни белковая часть апофермента, ни кофактор в отдельности не обладают заметной каталитической активностью. Какую же роль выполняют тот и другой?

Оказывается апофермент резко повышает каталитическую активность кофактора, а кофактор в свою очередь стабилизирует белковую часть, делает ее более устойчивой и менее уязвимой к денатурирующим агентам. Поэтому встает вопрос, что и какие вещества явл. кофакторами?

Роль кофакторов, как выяснилось, играют большинство витаминов или соединений построенных с их участием, но не только витамины выступают в роли кофакторов. Кроме того, это некоторые полипептиды, группы нуклеотидов и их производные и, наконец, ионы некоторых металлов. Последние годы в соответствии с химической природой кофакторов появилась классификация: 1) Кофакторы жирного ряда (глютатион, липоевая кислота, долихол фосфат). 2 Кофакторы алифатического ряда (убихинон или коэнзим Q).

3) Кофакторы гетероциклического ряда а) содержащие витамины (B1) тиоминлирофосфат (В6) перидоксальфосфат (В7) биоцетин (В9) тетрогидрофолат содержащий фоливую кислоту (фолиум - лист) 6) не содержащие витаминов геминовые кофакторы. Основой этих кофакторов является гемовое железо 4 Кофакторы-нуклеотиды а) содержащие витамины содержащие витамин В2 (флавинмононуклеотид) (фляос - желтый) (флавинадениндинуклеотид) НАД, НАДФ (РР или В5) HSKoA (пантотеновая кислота ВЗ) Кобамидные коферменты (В 12) содержат кобальт б) нуклеотиды не витамины АТФ,

уридиндифосфорноглюкуроновая кислота (УДФК), фосфоаденозинфосфосульфат (ФАФС) - активная фосфорная кислота, (ЦТФ) цитидинтрифосфорная кислота. Ф-ции: АТФ участвует в переносе адениловой и фосфорной кислоты, участвует в реакциях аденилирования и фосфолирирования ФАФС участвует в переносе сульфогрупп УДФК участвует в переносе глюкуроновой кислоты ЦТФ участвует в активации холина и фосфотидной кислоты. Процессы идущие при биосинтезе фосфолипидов. 5 Кофакторы ионов металлов Fe, Mn, Zn, К, Na, Mg, Ca, Сu.

КЛЕТОЧНЫЕ МЕМБРАНЫ

К клеточным мембранам относятся плазмолемма, кариолвмма, мембраны митохондрий, эндоплазматической сети, аппарата Гольджи, лизосом, перок-сисом. Общей чертой всех мембран клетки является то, что они представля­ют собой тонкие (6—10 нм) пласты липопротеидной природы (липиды в комплексе с белками) (рис. 5). Основными химическими компонентами клеточных мембран являются липиды (40 %) и белки (60 %); кроме того, во многих мембранах обнаружены углеводы (5—10 %).

К липидам относится большая группа органических веществ, обладаю­щих плохой растворимостью в воде (гидрофобность) и хорошей раствори­мостью в органических растворителях и жирах (липофильность). Состав ли-пидов в разных мембранах неодинаков. Например, плазматическая мембра­на в отличие от мембран эндоплазматической сети и митохондрий обога­щена холестерином. Характерными представителями липидов, встречающих­ся в клеточных мембранах, являются фосфолипиды (глицерофосфатиды), сфингомиелины и из стероидных липидов — холестерин.

Особенностью липидов является разделение их молекул на две функ­ционально различные части: гидрофобные неполярные, не несущие зарядов («хвосты»), состоящие из жирных кислот, и гидрофильные, за­ряженные полярные «головки». Это определяет способность липидов само­произвольно образовывать двухслойные (билипидные) мембранные струк­туры толщиной 5—7 нм.

Мембраны различаются и набором белковых молекул. Многие мембран­ные белки состоят из двух частей — участков, богатых полярными (несущи­ми заряд) аминокислотами, и участков, обогащенных неполярными ами­нокислотами: глицином, аланином, валином, лейцином. Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимо­действует с головками липидов и обращена в сторону водной фазы. Эти белки как бы пронизывают мембрану, их называют интегральными белка ми мембран. Кроме интегральных белков, существуют белки, частично встроенные в мембрану, — полуинтегральные и примембранные, не встро­енные в билипидный слой. По биологической роли белки мембран можно разделить на белки-ферменты, белки-переносчики, рецепторные и струк­турные белки.

Углеводы мембран входят в их состав не в свободном состоянии, они связаны с молекулами липидов или белков. Такие вещества называются соответственно гликолипидами и гликопротеидами. Количество их в мемб­ранах обычно невелико.

Как бы ни было велико различие между мембранами по количеству и составу их липидов, белков и углеводов, мембраны обладают рядом общих свойств, определяемых их основной структурой. Все мембраны являются барьерными структурами, резко ограничивающими свободную диффузию веществ между цитоплазмой и средой, с одной стороны, и между матрик-сом и содержимым мембранных органелл, с другой. Особенность же специ­фических функциональных нагрузок каждой мембраны определяется свой­ствами и особенностями белковых компонентов, большая часть из которых представляет собой ферменты или ферментные системы. Большую роль в функционировании мембран играют гликолипиды и гликопротеиды над-мембранного слоя.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.